REACHABILITY TYPES

¹University of Waterloo

- **Tracking Aliasing and Separation** IN
- **Higher-Order Functional Programs**
 - SPLASH/OOPSLA 2021
- Yuyan Bao¹ Guannan Wei² Oliver Bračevac² Luke Jiang² Qiyang He² Tiark Rompf²
 - ²Purdue University/PurPL

OWNERSHIP TYPE SYSTEMS The "Shared XOR Mutable" Principle

OWNERSHIP TYPE SYSTEMS Higher-Order Functions: "Counter" Examples

A Counter in { Scheme, ML, <u>Scala</u>,...} : def counter(n: Int) = {

val c = new Ref(n)

(() => C += 1, () => C -= 1)

}

val (incr, decr) = counter(0) incr(); incr(); decr() // 1

Let's Make One in Rust :

fn counter(n: **i64**)->(**impl** Fn()->(), **impl** Fn()->()) {

let c = Rc::new(Cell::new(n)); Dynamic reference counting, **let** c1 = c.clone();no static lifetime tracking! **let** c2 = c.clone();(move || { cl.set(cl.get() + 1); }, move || { c1.set(c2.get() - 1); })

OWNERSHIP TYPE SYSTEMS

The Prevailing Ownership and Borrowing Model:

This Work Flips it on its Head:

RETHINKING OWNERSHIP IN TERMS OF SEPARATION LOGIC

RustBelt: Securing the Foundations of the Rust Programming Language

RALF JUNG, MPI-SWS, Germany JACQUES-HENRI JOURDAN, MPI-SWS, Germany ROBBERT KREBBERS, Delft University of Technology, The Netherlands DEREK DREYER, MPI-SWS, Germany

- What happens if we expose separation and overlap all the way to the user-facing types?
- We get expressive ownership-style reasoning across higher-order functions!

REACHABILITY TYPES

THE $\lambda * CALCULUS$

new Ref(42) : Ref[Int]ø

val x = new Ref(42) : Ref[Int]{x}

val i = 42 : Int[⊥]

val y = x : Ref[Int]{x,y}

val z = !y : Int[⊥]

x := 0 : Unit⊥

Intuition: Reachability Types & Qualifiers $\Gamma \vdash t : T^q$ $q \in \{ \perp \} \uplus \mathscr{P}_{fin}(Var)$ Computation t yields a *T* value which may reach all variables in q. \perp is untracked (often omitted). means "fresh", no sharing w. context. \bigotimes

A simply-typed lambda calculus (STLC) with qualifiers, mutable references, recursion, and subtyping.

FUNCTIONS **Qualifiers Track Free Variables** val c1 : Ref[Int]{c1}; val c2 : Ref[Int]{c2} **def** addRef(c3 : Ref[Int][∅]) = c1 := !c1 + !c3; c1 addRef(c2) // ok addRef(c1) // type error def addRef2(c3 : Ref[Int]{c1}) = c1 := !c1 + !c3; c1addRef2(c1) // ok now // (Ref[Int]{c1} => Ref[Int]{c1}){c1}

$addRef's implementation \\ reaches/closes over c1. \\ // (Ref[Int]^{\emptyset} \Rightarrow Ref[Int]^{c1})^{c1} \\ addRef's implementation \\ must not share aliasing \\ with its argument: <math>\emptyset \sqcap \{c_1\} = \emptyset$

Intuition: Observable Separation

- Functions track their free variables, consistent with view as closure records.
- To prevent interference from uncontrolled aliasing, functions are separated from their arguments
- If full separation is too strict, we may adjust the function domain's qualifier for degrees of overlap.

ESCAPING CLOSURES How Can We Track their Free Variables? Type Assignment Inside vs. Outside of Lexical Scopes

{ () => new Ref(42) }

{ val y = new Ref(42); () => y } : (() => Ref[Int]{y}){y} ~> what now?

Wrong: (() => Ref[Int]^ø)^ø returns a *fresh* reference on each call! **Right**:

f(() => Ref[Int]{y}){y}

<: f(() => Ref[Int]{f}){y}

~> f(() => Ref[Int]{f})ø

ſ	Int
	•
	•

- ~> (() => Ref[Int]^Ø)^Ø : (() => Ref[Int]^ø)^ø
- { val y = new Ref(42); () => !y } : (() => Int){y} ~~> (() => Int)^Ø

tuition: Function Self-Qualifiers

- Abstract over the free variables by letting a function type refer to itself. A concept borrowed from DOT/Scala!
- The self-qualifier's presence indicates that some qualifier escapes (existential statement).
- Subtyping (<:) makes their use ergonomic, compared to existential types.

LIGHTWEIGHT REACHABILITY POLYMORPHISM

def inc(x : Ref[Int][@]) = { x := !x + 1; x } // : ((x : Ref[Int][@]) => Ref[Int]^{x})[⊥]

Lightweight Polymorphism (No Quantifiers!)

val c : Ref[Int] $\{a,b,c\}$; val d : Ref[Int] $\{d\}$ inc(c) // : Ref[Int]{a,b,c} inc(d) // : Ref[Int] $\{d\}$ inc(new Ref(0)) // : Ref[Int]

Dependent function type!

Full details in the paper!

Reachability Types: Tracking Aliasing and Separation in Higher-Order Functional Programs $t ::= c | x | \lambda f(x) \cdot t | t_1 t_2 | \text{ref } t | !t | t_1 := t_2$ $x, y, \ldots, f, g, \ldots \in Var$ $T ::= B \mid \operatorname{Ref} T \mid f(x:T^q) \to T^q$ $\in \mathcal{P}_{fin}(Var)$ $\Gamma ::= \emptyset \mid \Gamma, x : T^q$ $::= \perp \mid \alpha$ Fig. 2. The syntax of λ^* . $\Gamma \vdash t : T^q$ $\Gamma \vdash t_1 : (\operatorname{Ref} T)^q$ Т-сят T-deref T-var T-ref $\Gamma \vdash t_2 : T^{\perp}$ $\Gamma(x) = T^q$ $\Gamma \vdash t : (\operatorname{Ref} T)^q$ $\Gamma \vdash t : T^{\perp}$ $c \in B$ $\Gamma \vdash x : T^q$ $\Gamma \vdash !t : T^{\perp}$ $\Gamma \vdash c : B^{\perp}$ $\Gamma \vdash \operatorname{ref} t : (\operatorname{Ref} T)^{\varnothing}$ $\Gamma \vdash t_1 := t_2 : \text{Unit}^{\perp}$ $\begin{array}{l} \text{T-sub} \\ \Gamma \vdash t : T_1^{q_1} \end{array}$ T-abs $\Gamma \vdash t_1 : (f(x : T_1^{q_1 \sqcap q_f}) \to T_2^{q_2})^{q_f}$ $\Gamma \vdash t_2 : T_1^{q_1} \qquad x, f \notin FV(T_2)$ $F = f(x : T_1^{q_1}) \to T_2^{q_2}$ ($\Gamma, f : F^{q_f+f}, x : T_1^{q_1+x}$) $^{q_f \sqcup \{f,x\}} \vdash t : T_2^{q_2}$ $\Gamma \vdash T_1^{q_1} \stackrel{1}{\triangleleft} : T_2^{q_2}$ $\Gamma \vdash t_1 \ t_2 : T_2^{q_2[q_1/x, \ q_f/f]}$ $\Gamma \vdash t : T_2^{q_2}$ $\Gamma \vdash \lambda f(x).t : F^{q_f}$ $\left| \Gamma \vdash T_1^{q_1} <: T_2^{q_2} \right|$ $\frac{\Gamma \vdash q_1 <: q_2 \qquad \Gamma \vdash T_1^{\perp} <: T_2^{\perp} \qquad \Gamma \vdash T_2^{\perp} <: T_1^{\perp}}{\Gamma \vdash (\operatorname{Ref} T_1)^{q_1} <: (\operatorname{Ref} T_2)^{q_2}} \operatorname{S-Ref}$ $\frac{\Gamma \vdash q_1 <: q_2}{\Gamma \vdash B^{q_1} <: B^{q_2}} \text{ S-base}$ $\Gamma \vdash q_5 <: q_6 \qquad \Gamma \vdash T_3^{q_3} <: T_1^{q_1} \qquad \Gamma, f: (f(x:T_1^{q_1}) \to T_2^{q_2})^{q_5+f}, x:T_3^{q_3+x} \vdash T_2^{q_2} <: T_4^{q_4}$ S-fun $\Gamma \vdash (f(x:T_1^{q_1}) \to T_2^{q_2})^{q_5} <: (f(x:T_2^{q_3}) \to T_4^{q_4})^{q_6}$ Fig. 3. Typing and subtyping rules of λ^* . $C ::= \Box \mid C t \mid v C \mid \text{ref } C \mid !C \mid C := t \mid v := C$ $l \in Loc$ $v ::= \lambda f(x) \cdot t \mid c \mid l \mid unit$ $\sigma ::= \emptyset \mid \sigma, l \mapsto v$ t ::= ... | l $t \mid \sigma \rightarrow t' \mid \sigma'$ $C[(\lambda f(x).t) v] \mid \sigma \rightarrow C[t[v/x, (\lambda f(x).t)/f]] \mid \sigma$ $\rightarrow C[l] \mid (\sigma, l \mapsto v)$ $C[\operatorname{ref} v] \mid \sigma$ $l \notin dom(\sigma)$ [ReF] $\rightarrow C[\sigma(l)] \mid \sigma$ $l \in dom(\sigma)$ [Deref] $C[!l] \mid \sigma$ $C[l := v] \mid \sigma$ \rightarrow C[unit] | $\sigma[l \mapsto v]$ $l \in dom(\sigma)$ [Assign] Fig. 4. Reduction Semantics of λ^* .

139:9

TYPE SOUNDNESS Progress & Preservation [Wright & Felleisen '94]

Preservation

If $\emptyset \mid \Sigma \vdash \sigma$, $\emptyset \mid \Sigma \vdash t : T^q$, and $t \mid \sigma \longrightarrow t' \mid \sigma'$,

then $\emptyset \mid \Sigma' \vdash \sigma'$ and $\emptyset \mid \Sigma' \vdash t' : T^{q \bigoplus q'}$

for some $\Sigma' \supseteq \Sigma$ and $q' \sqsubseteq dom(\Sigma') \setminus dom(\Sigma)$

- Information may increase due to fresh allocations.
- Cancelling union ensures that untracked terms remain untracked: $\bot \oplus q = \bot \quad \alpha \oplus q = \alpha \sqcup q$
- Limitation: References must be *shallow*. We will solve this next.

Corollary: Preservation of Separation $\emptyset \mid \Sigma \vdash t_1 : S^{q_1} \mid \emptyset \mid \Sigma \vdash t_2 : T^{q_2} \quad q_1 \sqcap q_2 \sqsubseteq \emptyset$ $\emptyset \mid \Sigma' \vdash t'_1 : S^{q'_1} \mid \emptyset \mid \Sigma' \vdash t'_2 : T^{q'_2} \quad q'_1 \sqcap q'_2 \sqsubseteq \emptyset$

- Interleaving two computations with separate answers keeps them separate.
- Reduction steps never introduce spurious aliasing/sharing between the two answers.

HIGHER-ORDER FUNCTIONS

Non-Escaping Values [Osvald et al. 2016]

def try[A^{\emptyset}](block: (CanThrow^{\emptyset} => A^{\emptyset})^{\emptyset}): Option[A]^{\emptyset}

Return value cannot close over the capability.

- val c1 = new Ref(0)
- try { throw =>
 - c1 += 1
 - if (error) throw(new Exception("legal"))
 - () => throw(new Exception("illegal")
- The base calculus supports effects as capabilities models and lightweight effect polymorphism [Brachthäuser et al. 2020].
- Reachability types alone do not capture linear consumption of capabilities, etc. This requires a proper effect system.

Non-Interference

def par(a: (() => Unit)^ø)(b: (() => Unit)^ø): Unit Threads must have non-overlapping qualifiers val c1 = new Ref(0); val c2 = new Ref(0)// ok, no overlap par { c1 := !c1 + 1 } { c2 := !c2 + 2 } // type error, overlapping par { c1 := !c1 + !c2 } { c2 := !c1 + !c2 } // type error, overlapping, but safe (!) par { !c1 + !c2 } { !c1 + !c2 }

Effect systems can help making more fine-grained distinctions.

REACHABILITY &

REACHABILITY-AND-EFFECT SYSTEMS

- Reachability sets permit very precise effect systems, at the granularity of variables, in both flow-insensitive and flow-sensitive flavors.
- Effects make reachability types powerful enough to enable ownership transfer, consumption policies (e.g., linearity), borrowing, etc.
- All we need are flow-sensitive "kill" effects to model nested references, consumption policies, move semantics, etc.

FLOW-INSENSITIVE EFFECTS

Example: Finer-grained Non-Interference with Read/Write Effects

FLOW-SENSITIVE KILL EFFECTS Enable Uniqueness, Linearity, Ownership Transfer & More

Example: Use-Once Functions from Self-Killing

// fun(Int =>({fun} : kill) String)ø def fun(x) = { "Goodbye, cruel world!" }

fun(0) // fun at most once fun(1) // type error, no more fun!

RECOVERING NESTED REFERENCES Move Semantics and Ownership Transfer via Kill Effects

def f(x: Ref[Int]^{\emptyset}) = { val y = move(x); ... } val z = new Ref(1)f(z) // z is killed by f and unusable !z // type error

CASE STUDIES IN THE PAPER

Reachability Types and Flow-(in)sensitive Effects for:

- Control Operators
- Algebraic Effects and Handlers
- Concurrency Combinators

$$\Gamma, k: \left(k(x:A^{q_1}) \to^{(\epsilon_k \triangleright KE)} B\right)^{\{k\}} \vdash t:A^{q_2} \mid \epsilon NE$$
$$\Gamma \vdash \mathscr{C} k \text{ in } t:A^{q_1} \mid \epsilon$$

Variants

let/cc: $B = Nothing^{\perp}$ shift: $B = C^{q_3}$

Attributes

Escaping (yes/no): NE = true $NE = k \notin FV(A^{q_2})$

Affine (yes/no): $KE = \{(\{k\}, kill)\}$ $KE = \{\}$

EFFECT QUANTALES

Effect Quantale [Gordon 2021]:

A structure $(\mathbb{E}, \sqcup, \triangleright, I)$ where (\mathbb{E}, \sqcup) is a partial join semi lattice, and $(\mathbb{E}, \triangleright, I)$ is a partial monoid.

Example Effect Quantale:

Flow sensitive

Flow insensitive

$\[Delta]$	$\bot_\mathbb{E}$	rd	wr	kil
$\bot_{\mathbb{E}}$	$\perp_{\mathbb{E}}$	rd	wr	kil
rd	rd	rd	wr	kil
wr	wr	wr	wr	kil
kill	undefined			

Polymorphic Iterable Sequential Effect Systems

COLIN S. GORDON, Drexel University

Store-Sensitive Effect Quantale (New Here):

The lifting of a quantale $(\mathbb{E}, \sqcup, \triangleright, I)$

to a quantale over disjoint finite maps $\{\overline{(\alpha, \epsilon_{\mathbb{E}})}\}$,

assigning effects to reachability sets.

SUMMARY & CONTRIBUTIONS

Reachability Types

- Ownership-style reasoning for impure higher-order functional programs.
- Track sharing and its absence, inspired by separation logic.
- No global heap invariants.
- Statically safe, lightweight types & idiomatic code.

Reachability-and-Effect System

- Extensible effect system, based on store-sensitive effect quantales.
- All we need are flow-sensitive "kill" effects to model nested references, linearity, uniqueness, move sematics, etc.

Artifacts

- Interactive Prototype.
- Coq mechanization of variants of the base λ^* calculus.
- Available at:

https://github.com/TiarkRompf/reachability

