
Yuyan Bao1 Guannan Wei2 Oliver Bračevac2 Luke Jiang2 Qiyang He2 Tiark Rompf2

REACHABILITY TYPES
Tracking Aliasing and Separation

in

Higher-Order Functional Programs

1University of Waterloo 2Purdue University/PurPL

SPLASH/OOPSLA 2021

OWNERSHIP TYPE SYSTEMS

2

The “Shared XOR Mutable” Principle

OWNERSHIP TYPE SYSTEMS

def counter(n: Int) = {

 val c = new Ref(n)

 (() => c += 1, () => c -= 1)

}

val (incr, decr) = counter(0)

incr(); incr(); decr() // 1

A Counter in { Scheme, ML, Scala,…} :

fn counter(n: i64)->(impl Fn()->(), impl Fn()->()) {

 let c = Rc::new(Cell::new(n));

 let c1 = c.clone();

 let c2 = c.clone();

 (move || { c1.set(c1.get() + 1); },

 move || { c1.set(c2.get() - 1); })

}

Let’s Make One in Rust :

3

Higher-Order Functions: “Counter” Examples

Dynamic reference counting,

no static lifetime tracking!

OWNERSHIP TYPE SYSTEMS

The Prevailing Ownership and Borrowing Model:

4

 Global Invariants

(e.g., Uniqueness, Linearity…)

 Local Invariants

(e.g., Uniqueness, Linearity…)

This Work Flips it on its Head:

 Separation & Reachability

No Global Invariant

 Unsafe Features Local Relaxation

 (e.g., Borrowing)

RETHINKING OWNERSHIP IN TERMS OF SEPARATION LOGIC

5

• What happens if we expose separation and overlap
all the way to the user-facing types?

• We get expressive ownership-style reasoning across
higher-order functions!

I

REACHABILITY TYPES

7

new Ref(42) : Ref[Int]∅

val x = new Ref(42) : Ref[Int]{x}

val y = x : Ref[Int]{x,y}

val i = 42 : Int⊥

Intuition: Reachability Types & Qualifiers

q ∈ { ⊥ } ⊎ 𝒫𝖿𝗂𝗇(𝖵𝖺𝗋)

is untracked (often omitted).⊥

Computation t yields a T value which
may reach all variables in q.

A simply-typed lambda calculus (STLC)
with qualifiers, mutable references,
recursion, and subtyping.

Γ ⊢ t : Tq

means “fresh”, no sharing w. context.∅
val z = !y : Int⊥

x := 0 : Unit⊥

THE CALCULUSλ*

val c1 : Ref[Int]{c1}; val c2 : Ref[Int]{c2}

def addRef(c3 : Ref[Int]∅) =

 c1 := !c1 + !c3; c1

// (Ref[Int]∅ => Ref[Int]{c1}){c1}

def addRef2(c3 : Ref[Int]{c1}) =

 c1 := !c1 + !c3; c1

addRef(c2) // ok

addRef(c1) // type error

addRef2(c1) // ok now

FUNCTIONS
Qualifiers Track Free Variables

8

// (Ref[Int]{c1} => Ref[Int]{c1}){c1}

addRef’s implementation

must not share aliasing

with its argument: ∅ ⊓ {c1} = ∅

addRef’s implementation

reaches/closes over c1.

Intuition: Observable Separation
• Functions track their free variables, consistent with view as

closure records.

• To prevent interference from uncontrolled aliasing, functions
are separated from their arguments

• If full separation is too strict, we may adjust the function
domain’s qualifier for degrees of overlap.

{ val y = new Ref(42); () => !y } : (() => Int){y} ~> (() => Int)∅

<: f(() => Ref[Int]{f}){y}

~> f(() => Ref[Int]{f})∅

{ val y = new Ref(42); () => y } : (() => Ref[Int]{y}){y} ~> what now?

ESCAPING CLOSURES
How Can We Track their Free Variables?

9

Intuition: Function Self-Qualifiers
• Abstract over the free variables by letting a function type

refer to itself. A concept borrowed from DOT/Scala!

• The self-qualifier’s presence indicates that some qualifier
escapes (existential statement).

• Subtyping (<:) makes their use ergonomic, compared to
existential types.

f(() => Ref[Int]{y}){y}

Right:

Wrong: (() => Ref[Int]∅)∅ returns a fresh reference on each call!

{ () => new Ref(42) } : (() => Ref[Int]∅)∅ ~> (() => Ref[Int]∅)∅

Type Assignment Inside vs. Outside of Lexical Scopes

LIGHTWEIGHT REACHABILITY POLYMORPHISM

Full details in the paper!

10

def inc(x : Ref[Int]∅) = { x := !x + 1; x } // : ((x : Ref[Int]∅) => Ref[Int]{x})⊥

val c : Ref[Int]{a,b,c} ; val d : Ref[Int]{d}

inc(c) // : Ref[Int]{a,b,c}

inc(d) // : Ref[Int]{d}

inc(new Ref(0)) // : Ref[Int]∅

Lightweight Polymorphism (No Quantifiers!)

Dependent function type!

TYPE SOUNDNESS

∅ ∣ Σ ⊢ t1 : S q1 ∥ q1 ⊓ q2 ⊑ ∅

q′￼1 ⊓ q′￼2 ⊑ ∅

⟶ ∅ ∣ Σ ⊢ t2 : T q2

∅ ∣ Σ′￼⊢ t′￼1 : S q′￼1 ∅ ∣ Σ′￼⊢ t′￼2 : T q′￼2∥

⟶
Corollary: Preservation of Separation Preservation

∅ ∣ Σ ⊢ t : T q

∅ ∣ Σ′￼⊢ t′￼: T q⊕q′￼

∅ ∣ Σ ⊢ σ

∅ ∣ Σ′￼⊢ σ′￼

q′￼⊑ dom(Σ′￼)∖dom(Σ)Σ′￼⊇ Σ

t ∣ σ ⟶ t′￼∣ σ′￼If , , and ,

then and

for some and

Progress & Preservation [Wright & Felleisen ’94]

• Information may increase due to fresh allocations.

• Cancelling union ensures that untracked terms
remain untracked:
⊥ ⊕ q = ⊥ α ⊕ q = α ⊔ q

• Interleaving two computations with separate
answers keeps them separate.

• Reduction steps never introduce spurious
aliasing/sharing between the two answers.

11

• Limitation: References must be shallow. We will
solve this next.

val c1 = new Ref(0)

try { throw =>

 c1 += 1

 if (error) throw(new Exception(“legal”))

 () => throw(new Exception(“illegal”)

}

def try[A∅](block: (CanThrow∅ => A∅)∅): Option[A]∅
Non-Escaping Values [Osvald et al. 2016] Non-Interference

def par(a: (() => Unit)∅)(b: (() => Unit)∅): Unit

HIGHER-ORDER FUNCTIONS

12

val c1 = new Ref(0); val c2 = new Ref(0)

par { c1 := !c1 + 1 } { c2 := !c2 + 2 }
// ok, no overlap

par { c1 := !c1 + !c2 } { c2 := !c1 + !c2 }
// type error, overlapping

par { !c1 + !c2 } { !c1 + !c2 }
// type error, overlapping, but safe (!)

• The base calculus supports effects as capabilities models and
lightweight effect polymorphism [Brachthäuser et al. 2020].

• Reachability types alone do not capture linear consumption of
capabilities, etc. This requires a proper effect system.

Return value cannot

close over the capability.

Threads must have

non-overlapping qualifiers

• Effect systems can help making more fine-grained distinctions.

II

REACHABILITY &

EFFECTS

14

REACHABILITY-AND-EFFECT SYSTEMS

• Reachability sets permit very precise effect systems, at the granularity of
variables, in both flow-insensitive and flow-sensitive flavors.

• Effects make reachability types powerful enough to enable ownership
transfer, consumption policies (e.g., linearity), borrowing, etc.

• All we need are flow-sensitive “kill” effects to model nested references,
consumption policies, move semantics, etc.

15

FLOW-INSENSITIVE EFFECTS

par { !c1 + !c2 } { c4 := !c1 + !c2 + !c3 }

Example: Finer-grained Non-Interference with Read/Write Effects

({c1,c2} : rd) ({c1,c2,c3} : rd, {c4} : wr)

⊔rd rd = rd

16

FLOW-SENSITIVE KILL EFFECTS
Enable Uniqueness, Linearity, Ownership Transfer & More

Example: Use-Once Functions from Self-Killing

def fun(x) = { “Goodbye, cruel world!” }
// fun(Int =>({fun} : kill) String)∅

fun(0) // fun at most once

fun(1) // type error, no more fun!

RECOVERING NESTED REFERENCES
Move Semantics and Ownership Transfer via Kill Effects

17

def f(x: Ref[Int]∅) = { val y = move(x); … }

val z = new Ref(1)

f(z) // z is killed by f and unusable

!z // type error

CASE STUDIES IN THE PAPER

Γ, k : (k(x : A q1) →(ϵk ⊳ KE) B){k} ⊢ t : A q2 ∣ ϵ NE
Γ ⊢ 𝒞 k 𝗂𝗇 t : A q1 ∣ ϵ

B = 𝖭𝗈𝗍𝗁𝗂𝗇𝗀⊥ B = C q3let/cc: shift:

KE = {}KE = {({k}, 𝗄𝗂𝗅𝗅)}

NE = true NE = k ∉ FV(Aq2)Escaping (yes/no):

Affine (yes/no):

Variants

Attributes

18

• Control Operators

• Algebraic Effects and Handlers

• Concurrency Combinators

Reachability Types and Flow-(in)sensitive Effects for:

Effect Quantale [Gordon 2021]:
(𝔼, ⊔ , ⊳ , I)

(𝔼, ⊔) is a partial join semi lattice,

(𝔼, ⊳ , I) is a partial monoid.

A structure where

and {(α, ϵ𝔼)}

Store-Sensitive Effect Quantale (New Here):

(𝔼, ⊔ , ⊳ , I)The lifting of a quantale

to a quantale over disjoint finite maps ,

assigning effects to reachability sets.

EFFECT QUANTALES

Example Effect Quantale:

⊥𝔼

𝗋𝖽
𝗐𝗋
𝗄𝗂𝗅𝗅

Flow
insensitive

Flow
sensitive

19

SUMMARY & CONTRIBUTIONS
Reachability Types
• Ownership-style reasoning for impure higher-order

functional programs.

• Track sharing and its absence, inspired by
separation logic.

• No global heap invariants.

• Statically safe, lightweight types & idiomatic code.

Reachability-and-Effect System
• Extensible effect system, based on store-sensitive effect

quantales.

• All we need are flow-sensitive “kill” effects to model
nested references, linearity, uniqueness, move sematics,
etc.

20

Artifacts
• Interactive Prototype.

• Coq mechanization of variants of the base calculus.

• Available at:

https://github.com/TiarkRompf/reachability

λ*

https://github.com/TiarkRompf/reachability

