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This is a companion report for the OOPSLA 2023 paper of the same title, presenting a detailed end-to-end
account of the 𝜆∗G graph IR, at a level of detail beyond a regular conference paper. Our first concern is adequacy
and soundness of 𝜆∗G , which we derive from a direct-style imperative functional language (a variant of Bao et
al.’s 𝜆∗-calculus with reachability types and a simple effect system) by a series of type-preserving translations
into a calculus in monadic normalform (MNF). Static reachability types and effects entirely inform 𝜆∗G’s
dependency synthesis. We argue for its adequacy by proving its functional properties along with dependency
safety via progress and preservation lemmas with respect to a notion of call-by-value (CBV) reduction that
checks the observed order of effects.

Our second concern is establishing the correctness of 𝜆∗G’s equational rules that drive compiler optimizations
(e.g., DCE, 𝜆-hoisting, etc.), by proving contextual equivalence using logical relations. A key insight is that the
functional properties of dependency synthesis permit a logical relation on 𝜆∗G in MNF in terms of previously
developed logical relations for the direct-style 𝜆∗-calculus.

Finally, we also include a longer version of the conference paper’s section on code generation and code
motion for 𝜆∗G as implemented in Scala LMS.
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1 INTRODUCTION
This document complements the paper “Graph IRs for Impure Higher-Order Languages” [Bračevac
et al. 2023] and presents a detailed end-to-end account of the 𝜆∗G graph IR, step by step refinining
a series of calculi and the formal development of their metatheory, in a way that goes beyond
the space available in a conference paper. The process begins from the direct-style 𝜆∗𝜀 -calculus (a
variant of Bao et al. [2021]’s 𝜆∗-calculus with a simple effect system), proceeds with 𝜆∗M, a version
in monadic normal form (MNF), and ends in the 𝜆∗G-calculus, the typed graph IR in monadic normal
form (MNF)1 with effect dependencies. Each stage constitutes a straightforward refinement which
is provably type/effect/qualifier preserving, and is provably type-safe with respect to a notion of
call-by-value (CBV) reduction, established by standard progress and preservation lemmas.
The key end-to-end safety guarantees are visualized in Figure 1. The result is a sequence of

corollaries establishing key properties, namely that the direct-style language can be translated
in a type-preserving and dependency-synthesizing manner into 𝜆∗G, and that 𝜆∗G is sound with
respect to a dependency-checking call-by-value operational semantics. It follows that synthesized
dependencies correctly reflect the execution order of effects, and Bao et al. [2021]’s preservation of
separation holds for the graph IR, a memory property guaranteeing that reductions never cause
disjoint graph IR computations to become aliased.

Leveraging the type-and-effects safety in the 𝜆∗𝜀 -calculus, the equational rules shown in the paper
(Section 5.1) are proved sound by contextual equivalence via logical relations, building upon a
framework developed in parallel with this report [Bao et al. 2023].
1Monadic normal form [Hatcliff and Danvy 1994] is a generalization of ANF [Flanagan et al. 1993] and related let-normal
forms, where let bindings permit nesting.
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We present the corresponding development in detail as follows:

• The direct-style 𝜆∗𝜀 -calculus (Section 2): we introduce the syntax and typing rules of
our base calculus with reachability types and effects, motivating the basic design principles
and features of the system. The formalization and proofs very closely follow the publicly
available Coq mechanizations of the original 𝜆∗-calculus2. 𝜆∗𝜀 as presented in this report
lacks some features of the original 𝜆∗-calculus (e.g., no recursion, no escaping closures, flat
mutable references) which are non-essential to understand the core ideas.
• The 𝜆∗𝜀 -calculus with store-allocated values (Section 3): as a stepping stone towards
monadic normal form, we refine the call-by-value operational semantics of 𝜆∗𝜀 to place
both mutable references and immutable introduction forms in the store, and prove the
direct-style type system sound w.r.t. this refined semantics. Notably, substitutions become
simpler, because they are just renamings of variables to store locations.
• The monadic normal form 𝜆∗M (Section 4): we define a provably type/effect/qualifier-
preserving translation of the direct-style 𝜆∗𝜀 -calculus into 𝜆∗M which is in monadic normal
form (MNF). This normal form generalizes the previously used A-normal form (ANF) by
permitting nested terms. Unlike ANF, reductions preserve the monadic normalform at
all times, even under 𝛽-reduction. We further establish that 𝜆∗M is a proper sublanguage
of 𝜆∗𝜀 , by (1) proving that MNF terms can always be assigned the same type, effect, and
reachability qualifiers in both systems, and (2) proving that reduction with store-allocated
values (Section 3) preserves MNF. Type soundness of 𝜆∗M follows from type soundness of 𝜆∗𝜀
as a corollary.
• The graph IR 𝜆∗G with (hard) dependencies (Section 5): we enrich the MNF-calculus
𝜆∗M with effect dependencies in the 𝜆∗G-calculus. Dependencies are entirely determined by
reachability qualifiers and effects. We prove type soundness and preservation of separa-
tion with respect to a stricter operational semantics, which establishes dependency safety:
evaluation respects the order of effect dependencies for well-typed graph IR terms, i.e., an
effectful graph node is executed only if all its dependencies have already been resolved.
We also prove end-to-end type/effect/qualifier preservation and effect synthesis from the
direct-style 𝜆∗𝜀 -calculus into the 𝜆∗G graph IR.
• The graph IR 𝜆∗G in MNF with hard and soft dependencies (Section 6): we refine the

effects of 𝜆∗G from mere uses to a read and write distinction, which synthesize into hard and
soft dependencies.
• The equational theory of 𝜆∗𝜀 (Section 7):We develop logical relations over reachability
types and effects, which enables reasoning about contextual equivalence of 𝜆∗𝜀 terms.
• Optimization rules and equational theory of 𝜆∗G (Section 8):We prove soundness of the
optimization rules in the main paper for the 𝜆∗G graph IR with hard dependencies in terms
of contextual equivalence. We leverage the results from Sections 4, 6 and 7, to derive the
logical relations argument by appealing to the direct-style system through a "round-trip"
translation erasing and re-synthesizing hard dependencies. We leave the logical relations
argument for the system including soft dependencies as future work.
• Code motion algorithms for 𝜆∗G (Section 9): we present the code motion algorithms that
transform graphs into trees and emit code. A vanilla code motion algorithm is presented
first, which is then extended with frequency estimation and compact code generation.

2http://github.com/tiarkrompf/reachability

http://github.com/tiarkrompf/reachability
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Syntax 𝜆∗𝜀
𝑥,𝑦, 𝑧 ∈ Var Variables
ℓ,𝑤 ∈ Loc Locations
𝑣 ::= 𝑐 | 𝜆𝑥 .𝑡 | ℓ Values
𝑡 ::= 𝑣 | ℓ | 𝑥 | 𝑡 𝑡 | refℓ 𝑡 | ! 𝑡 | 𝑡 B 𝑡 | let 𝑥 = 𝑡 in 𝑡 Terms
𝑝, 𝑞, 𝑟, 𝜺, 𝜑 ∈ Pfin (Var ⊎ Loc) Qualifiers/Effects/Observations
𝑆,𝑇 ,𝑈 ,𝑉 ::= 𝐵 | (𝑥 : 𝑇 𝑞) →𝜺 𝑇 𝑞 | Ref 𝑇 Types
Γ ::= ∅ | Γ, 𝑥 : 𝑇 𝑞 Typing Environments
Σ ::= ∅ | Σ, ℓ : 𝑇 𝑞 Store Typing

Term Typing [Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺

𝑐 ∈ 𝐵
[Σ | Γ] 𝜑 ⊢ 𝑐 : 𝐵 ∅ ∅

(t-cst)

𝑥 : 𝑇 𝑞 ∈ Γ 𝑥 ⊆ 𝜑

[Σ | Γ] 𝜑 ⊢ 𝑥 : 𝑇 𝑥 ∅
(t-var)

ℓ : 𝑇 𝑞 ∈ Σ ℓ ⊆ 𝜑

[Σ | Γ] 𝜑 ⊢ ℓ : 𝑇 ℓ ∅
(t-loc)

[Σ | Γ , 𝑥 : 𝑇 𝑝 ] 𝑞,𝑥 ⊢ 𝑡 : 𝑈 𝑟 𝜺
𝑞 ⊆ 𝜑

[Σ | Γ] 𝜑 ⊢ 𝜆𝑥.𝑡 : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟 ) 𝑞 ∅
(t-abs)

[Σ | Γ] 𝜑 ⊢ 𝑡1 :
(
𝑥 :𝑇 𝑝∗∩𝑞∗ →𝜺3 𝑈 𝑟

) 𝑞 𝜺1
[Σ | Γ] 𝜑 ⊢ 𝑡2 : 𝑇 𝑝 𝜺2 𝜃 = [𝑝/𝑥]
𝑥 ∉ fv(𝑈 ) 𝜺3 ⊆ 𝑞, 𝑥 𝑟 ⊆ 𝜑, 𝑥

[Σ | Γ] 𝜑 ⊢ 𝑡1 𝑡2 : (𝑈 𝑟 𝜺1 ▷ 𝜺2 ▷ 𝜺3)𝜃
(t-app)

[Σ | Γ] 𝜑 ⊢ 𝑡1 : 𝑆 𝑝 𝜺1
[Σ | Γ , 𝑥 : 𝑆 𝑝∗∩𝜑∗] 𝜑,𝑥 ⊢ 𝑡2 : 𝑇 𝑞 𝜺2

𝜃 = [𝑝/𝑥] 𝑥 ∉ fv (𝑇 )
[Σ | Γ] 𝜑 ⊢ let 𝑥 = 𝑡1 in 𝑡2 : (𝑇 𝑞 𝜺1 ▷ 𝜺2)𝜃

(t-let)

[Σ | Γ] 𝜑 ⊢ 𝑡1 : Alloc𝑞 𝜺1
[Σ | Γ] 𝜑 ⊢ 𝑡2 : 𝐵 ∅ 𝜺2

[Σ | Γ] 𝜑 ⊢ ref𝑡1 𝑡2 : (Ref 𝐵) ∅ 𝜺1 ▷ 𝜺2 ▷ 𝒒
(t-ref)

[Σ | Γ] 𝜑 ⊢ 𝑡 : (Ref 𝐵) 𝑞 𝜺

[Σ | Γ] 𝜑 ⊢ !𝑡 : 𝐵 ∅ 𝜺 ▷ 𝒒
(t-!)

[Σ | Γ] 𝜑 ⊢ 𝑡1 : (Ref 𝐵) 𝑞 𝜺1
[Σ | Γ] 𝜑 ⊢ 𝑡2 : 𝐵 ∅ 𝜺2

[Σ | Γ] 𝜑 ⊢ 𝑡1 B 𝑡2 : Unit∅ 𝜺1 ▷ 𝜺2 ▷ 𝒒
(t-:=)

[Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑆 𝑝 𝜺1 Σ | Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2
𝑞, 𝜺2 ⊆ 𝜑

[Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺2
(t-sub)

Subtyping Σ | Γ ⊢ 𝑞 <: 𝑞 Σ | Γ ⊢ 𝑇 <: 𝑇 Σ | Γ ⊢ 𝑇 𝑞 𝜺 <: 𝑇 𝑞 𝜺

𝑝 ⊆ 𝑞 ⊆ dom(Γ) ∪ dom(Σ)
Σ | Γ ⊢ 𝑝 <: 𝑞

(q-sub)

Σ | Γ ⊢ 𝐵 <: 𝐵
(s-base)

Σ | Γ ⊢ Ref 𝐵 <: Ref 𝐵
(s-ref)

Σ | Γ ⊢ 𝑈 𝑞 ∅ <: 𝑆 𝑜 ∅

Γ , 𝑥 : 𝑈 𝑝 | Σ ⊢ 𝑇 𝑞 𝜺1 <: 𝑉 𝑟 𝜺2

Σ | Γ ⊢ (𝑥 : 𝑆 𝑜 ) →𝜺1 𝑇 𝑞 <: (𝑥 : 𝑈 𝑝 ) →𝜺2 𝑉 𝑟

(s-fun)

Σ | Γ ⊢ 𝑆 <: 𝑇
Σ | Γ ⊢ 𝑝 <: 𝑞 Σ | Γ ⊢ 𝜺1 <: 𝜺2

Σ | Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2
(sqe-sub)

Fig. 2. The direct-style 𝜆∗𝜀 -calculus.

2 THE DIRECT-STYLE 𝜆∗𝜀 -CALCULUS
2.1 Overview
The 𝜆∗𝜀 -calculus is a variant of Bao et al.’s 𝜆∗-calculus. The original system features an effect
system based on Gordon [2021]’s effect quantale framework. For simplicity, we only consider a
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Qualifier Substitution 𝑞 [𝑥 ↦→ 𝑝]
𝑞 [𝑝/𝑥] = 𝑞 \ {𝑥} ∪ 𝑝 𝑥 ∈ 𝑞
𝑞 [𝑝/𝑥] = 𝑞 𝑥 ∉ 𝑞

Reachability Σ | Γ ⊢𝑥 { 𝑥 Σ | Γ ⊢ ℓ { ℓ Σ | Γ ⊢𝑞∗

Σ | Γ ⊢𝑥 { 𝑦 ⇔ 𝑥 : 𝑇𝑞,𝑦 ∈ Γ Reachability Relation (Variables)

Σ | Γ ⊢ ℓ { 𝑤 ⇔ ℓ : 𝑇𝑞,𝑤 ∈ Σ Reachability Relation (Locations)

Σ | Γ ⊢𝑥∗ := {𝑦 | 𝑥 {∗ 𝑦 } Variable Saturation

Σ | Γ ⊢ ℓ∗ := {𝑤 | ℓ {∗ 𝑤 } Location Saturation

Σ | Γ ⊢𝑞∗ :=
⋃

𝑥∈𝑞 𝑥∗ ∪
⋃

ℓ∈𝑞 ℓ∗ Qualifier Saturation

Effects 𝜺 ▷ 𝜺

𝜺1 ▷ 𝜺2 := 𝜺1 ∪ 𝜺2 Sequential Composition

Fig. 3. Operators on qualifiers and effects. We often leave the context implicit (marked as gray).

stripped-down effect system corresponding to a trivial effect quantale just tracking whether an
effect is induced on reachable variables, effectively making effects just another qualifier (i.e., a set
of variables and locations) in the typing judgment. This effect system is sufficient for calculating
granular effect dependencies. This version also lacks a⊥ qualifier for untracked values, and recursive
𝜆-abstractions.3 To keep the discussion focused and on point, we omitted those features which do
not add much to the discussion of the core ideas apart from additional proof cases.

2.2 Examples
Here we use a few examples from Bao et al. [2021] to motivate the direct-style 𝜆∗𝜀 -calculus as the
base system. The basic idea is to track which other values are reachable from a given expression’s
result. For example, the following expression allocates a reference cell of integers and binds it to x:
val x = new Ref(42) // : Ref[Int]{x} {𝑤}

Therefore, by reflexivity, the type of x has a qualifier (i.e. a set of variables) that contains itself.
The allocation also induces an effect over an allocator𝑤 for allocating memory resources. We can
further bind x to a new variable y, which induces no effect (indicated by the empty set):
val y = x // : Ref[Int]{y} ∅ ← lazy assignment (this work)

// : Ref[Int]{x,y} ∅ ← eager assignment (Bao et al.)

As in Wei et al. [2023a], the system considered here is “lazy” with respect to qualifier assignment,
in the sense that it assigns minimal qualifiers. For example, y reaches itself, just like x does, but
in this particular context, we can also deduce that y indirectly reaches x, since it is an alias. This
provides a certain degree of lightweight, i.e., quantifier-free, reachability polymorphism [Wei et al.
2023a]. We use the notation {y}∗ = {x,y} for the transitively closed reachability set in a given context
(Figure 3). In contrast, Bao et al. use an “eager” qualifier assignment, e.g., they would always assign
the transitively closed qualifier.
We refer readers to Section 2 of Bao et al. [2021] for more illustrative examples of reachability

types. Section 2 of the main paper [Bračevac et al. 2023] also provides examples after adapting
reachability types to the graph IR.
3Modulo the (straightforward) addition of effects, the system presented here closely follows the mechanized “overlap lazy”
variant found at https://github.com/tiarkrompf/reachability/tree/main/base/lambda_star_overlap_lazy.

https://github.com/tiarkrompf/reachability/tree/main/base/lambda_star_overlap_lazy
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2.3 Syntax
Figure 2 shows the syntax of 𝜆∗𝜀 which is based on the simply-typed 𝜆-calculus with mutable
references and subtyping. We denote general term variables by the meta variables 𝑥,𝑦, 𝑧, and
reserve ℓ,𝑤 for store locations.

Terms consist of constants of base types, variables, functions 𝜆𝑥 .𝑡 , function applications, reference
allocations, dereferences, assignments, and let-expressions.
Reachability qualifiers 𝑝, 𝑞, 𝑟 are finite sets of variables and store locations. For readability, we

often drop the set notation for qualifiers and write them down as comma-separated lists of atoms.
We distinguish ordinary types𝑇 from qualified types𝑇 𝑞 , where the latter annotates a qualifier 𝑞

to an ordinary type 𝑇 . The types consist of base types 𝐵 (e.g., Int, Unit), dependent function types
(𝑥 : 𝑇 𝑞) →𝜺 𝑆 𝑝 , where both argument and return type are qualified. The codomain 𝑆 𝑝 may depend
on the argument 𝑥 in its qualifier and type. Function types carry an annotation 𝜺 for its latent effect,
which is a set of variables and locations, akin to qualifiers.

For simplicity, mutable reference types Ref 𝐵 can only store values of base types. We could also
permit forms of nested references, by adding a flow-sensitive effect system [Bao et al. 2021].

An observation 𝜑 is a finite set of variables which is part of the term typing judgment (Section 2.4).
It specifies which variables and locations in the typing context Γ and store typing Σ are observable.
The former assigns qualified typing assumptions to variables.

2.4 Statics
The term typing judgment [Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺 in Figure 2 states that term 𝑡 has qualified type 𝑇 𝑞

and may induce effect 𝜺, and may only access the typing assumptions of Γ observable by 𝜑 . One
may think of 𝑡 as a computation that incurs effect 𝜺 and yields a result value of type 𝑇 aliasing no
more than 𝑞, if it terminates.

Different from Bao et al. [2021], we internalize the filter𝜑 as part the typing relation. Alternatively,
we could formulate the typing judgment without internalizing 𝜑 , and instead have an explicit
context filter operation Γ 𝜑 := {𝑥 : 𝑇 𝑞 ∈ Γ | 𝑞, 𝑥 ⊆ 𝜑} for restricting the context in subterms, just
like Bao et al. [2021] which loosely takes inspiration from substructural type systems. Internalizing
𝜑 (1) makes observability an explicit notion, which facilitates reasoning about separation and
overlap, and (2) greatly simplifies the Coq mechanization. Context filtering is only needed for term
typing, but not for subtyping, so as to keep the formalization simple.

2.4.1 Functions and Lightweight Polymorphism. Function typing (t-abs) implements the observable
separation guarantee, i.e., the body 𝑡 can only observe what the function type’s qualifier 𝑞 specifies,
plus the argument 𝑥 , and is otherwise oblivious to anything else in the environment. We model this
by setting the observation to 𝑞, 𝑥, 𝑓 when typing the body. Thus, its observation 𝑞 at least includes
the free variables of 𝑡 . To ensure well-scopedness, 𝑞 must be a subset of the observation 𝜑 on the
outside. In essence, a function type implicitly quantifies over anything that is not observed by 𝑞,
achieving a lightweight form of qualifier polymorphism.

2.4.2 Dependent Application, Separation and Overlap. Function applications (t-app) are qualifier-
dependent in that the result qualifier can depend on the argument.
Function applications also establish an observable separation between the argument reachable

set 𝑝 and the function reachable set 𝑞, as denoted as 𝑝∗ ∩ 𝑞∗. The intersection between 𝑝∗ and
𝑞∗ specifies the permitted overlap. We are careful to intersect the transitive reachability closure
(a.k.a. saturated version, Figure 3) of the two qualifiers. This is necessary in the lazy reachability
assignment, because we might miss common, indirect overlap between the sets otherwise. If the
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intersection declared in the function type is empty, then it means complete separation between the
argument and the entities observed by the function from the environment.

2.4.3 Qualifier Substitution. The base substitution operation 𝑞 [𝑝/𝑥] of qualifiers for variables is
defined in Figure 3, and we use it along with its homomorphic extension to types in dependent
function application. Substitution replaces the variable with the given qualifier, if present in the
target.

2.4.4 Effects. Our effect system is a simple flow-insensitive instantiation of Gordon [2021]’s effect
quantale system. An effect 𝜺 denotes the set of variables/locations that might be used during
the computation. For a compound term, the final effect is computed by composing the effects of
sub-terms with the intrinsic effect of this term. For example, the effect of assignments has two
parts: (1) 𝜺1, 𝜺2 the effects of sub-terms, and (2) 𝑞 the variables/locations being modified. The final
effect is obtained by composing these effects.

Although the typing rules presented in Figure 2 pretend to use the sequential effect composition
operator ▷, its definition ∪ computes an upper bound of two effects and is not flow-sensitive (Fig-
ure 3), i.e. the composed effect is not sensitive to the order of composition. This simple instantiation
is sufficient for deriving dependencies (cf. Section 5).

2.4.5 Mutable References. Slightly different from Bao et al. [2021], the allocation ref𝑡1 𝑡2 (t-ref)
additionally takes a term 𝑡1 that has an Alloc primitive type. An allocation induces an effect over
aliases of 𝑡1, which is recorded as the composed term effect.
The typing rule of reference allocation (t-ref), read (t-!), and write (t-:=) work with reference

types whose inner referent values are base values. This is sufficient for understanding the core
ideas of the graph IR. It is nevertheless possible to extend the base system with nested references
(e.g. allowing storing functions) by a flow-sensitive effect system, as shown by Bao et al. [2021].
The subtyping of references is invariant in the referent type.

2.4.6 Subtyping. We distinguish subtyping between qualifiers 𝑞, ordinary types 𝑇 , and qualified
types 𝑇 𝑞 , where the latter two are mutually dependent. Subtyping is assumed to be well-scoped
under the typing context Γ and store Σ, i.e., types and qualifiers mention only variables/locations
bound in Γ and Σ, and so do its typing assumptions. Qualified subtyping (sqe-sub) just forwards to
the other two judgments for scaling the type, qualifier, and effect respectively.

Qualifier Subtyping. Qualifier subtyping includes the subset relation (q-sub), which resort to the
subset relation since qualifiers are sets. Since effects are just qualifiers, we use the same subtyping
relation for subeffecting.

Ordinary Subtyping. Subtyping rules for base types (s-base), reference types (s-ref), and function
types (s-fun) are standard modulo qualifiers. Reflexivity and transitivity are both admissible for
subtyping on ordinary and qualified types. Function types are contravariant in the domain, and
covariant in the codomain and effect, as usual. Due to dependency in the codomain, we are careful
to extend the context with the smaller argument type.

2.5 Dynamics
The single-step, call-by-value (CBV) for 𝜆∗𝜀 (Figure 4) is standard. To bridge the gap to monadic
normal forms later on, we model stores as sequences of mutable let bindings. One may view
computations as syntactic sequences of let bindings (think already evaluated graph nodes) followed
by a redex. Another difference to standard treatments is that reference allocation takes the allocation-
capability variable 𝜔 as an explicit extra argument. This design makes the treatment of effectful
operations uniform, in the sense that an operation always induces an effect on some operand.
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Stores, Evaluation Contexts
𝜎 ::= ∅ | 𝜎, lets ℓ = ref𝜔 𝑣

𝐸 ::= □ | 𝐸 𝑡 | 𝑣 𝐸 | ref𝐸 𝑡 | ref𝑣 𝐸 | !𝐸 | 𝐸 := 𝑡 | 𝑣 := 𝐸 | let 𝑥 = 𝐸 in 𝑡

Well-Formed Stores [Σ | Γ] 𝜑 ⊢ 𝜎

[∅ | Γ] 𝜑 ⊢ ∅
[Σ | Γ] 𝜑 ⊢ 𝜎 [Σ | Γ] 𝜑 ⊢ 𝑣 : 𝐵 ∅ ∅ ℓ ∉ dom(Σ)

[Σ, ℓ : Ref 𝐵 ∅ | Γ] 𝜑 ⊢ 𝜎, lets ℓ = ref 𝑣

Reduction Rules 𝜎 | 𝑡 −→v 𝜎 | 𝑡

𝜎 | 𝐸 [ (𝜆𝑥 .𝑡) 𝑣 ] −→v 𝜎 | 𝐸 [ 𝑡 [𝑣/𝑥] ] (𝛽)
𝜎 | 𝐸 [ let 𝑥 = 𝑣 in 𝑡 ] −→v 𝜎 | 𝐸 [ 𝑡 [𝑣/𝑥] ] (let)

𝜎 | 𝐸 [ ref𝜔 𝑣 ] −→v 𝜎, lets ℓ = ref𝜔 𝑣 | 𝐸 [ ℓ ] (ref)
ℓ ∉ dom(𝜎)

𝜎, lets ℓ = ref𝜔 𝑣, 𝜎′ | 𝐸 [ !ℓ ] −→v 𝜎, lets ℓ = ref𝜔 𝑣, 𝜎′ | 𝐸 [ 𝑣 ] (deref)
𝜎, lets ℓ = ref𝜔 𝑣, 𝜎′ | 𝐸 [ ℓ := 𝑣 ′ ] −→v 𝜎, lets ℓ = ref𝜔 𝑣 ′, 𝜎′ | 𝐸 [ unit ] (assign)

Fig. 4. Standard call-by-value reduction for 𝜆∗𝜀 .

The allocation capability 𝜔 is a base constant for allocation of base type Alloc, we consider an
initial store with lets 𝑤 = 𝜔 , and𝑤 : Alloc∅.

2.6 Metatheory
The 𝜆∗𝜀 -calculus exhibits syntactic type soundness which we prove by standard progress and
preservation properties (Theorems 2.11 and 2.12). Type soundness implies the preservation of
separation corollary (Corollary 2.13) as set forth by Bao et al. [2021] for their 𝜆∗-calculus. It is a
memory property certifying that the results of well-typed 𝜆∗𝜀 terms with disjoint qualifiers indeed
never alias.

The metatheory of the 𝜆∗𝜀 -calculus closely follows the “lazy overlap” variant of 𝜆∗-calculus, which
has been mechanized.4 The major difference lies in the addition of a simple effect system, which
does not change the metatheory significantly, other than carrying an extra qualifier for effects in
judgments. Below, we discuss key lemmas required for the type soundness proof.

2.6.1 Observability Properties. Reasoning about substitutions and their interaction with over-
lap/separation in preservation lemmas requires that the qualifiers assigned by term typing are
observable. The following lemmas are proved by induction over the respective typing derivations:

Lemma 2.1 (Observability Invariant). Term typing always assigns observable qualifiers and
effects, i.e., if [Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺, then 𝑞, 𝜺 ⊆ 𝜑 .

Well-typed values cannot observe anything about the context beyond their assigned qualifier:

Lemma 2.2 (Tight Observability for Values). If [Σ | Γ] 𝜑 ⊢ 𝑣 : 𝑇 𝑞 𝜺, then [Σ | Γ] 𝑞 ⊢ 𝑣 : 𝑇 𝑞 ∅.

It is easy to see that any observation for a function 𝜆𝑥.𝑡 will at least track the free variables of the
body 𝑡 .

4The mechanization can be found at https://github.com/tiarkrompf/reachability/tree/main/base/lambda_star_overlap_lazy.

https://github.com/tiarkrompf/reachability/tree/main/base/lambda_star_overlap_lazy


10 Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and Tiark Rompf

2.6.2 Weakening and Narrowing Lemmas. The 𝜆∗𝜀 calculus has standard weakening and narrowing
lemmas.

Lemma 2.3 (Subtyping Weakening).

Σ | Γ ⊢ 𝑝 <: 𝑞 Γ′ ⊇ Γ Σ′ ⊇ Σ

Σ′ | Γ′ ⊢ 𝑝 <: 𝑞

Σ | Γ ⊢ 𝑆 <: 𝑇 Γ′ ⊇ Γ Σ′ ⊇ Σ

Σ′ | Γ′ ⊢ 𝑆 <: 𝑇

Σ | Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2 Γ′ ⊇ Γ Σ′ ⊇ Σ

Σ′ | Γ′ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2

Proof. Weakening on qualifier subtyping trivially follows from its definition. The others are
proved by mutual induction over the respective derivations. □

Lemma 2.4 (Weakening).

[Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺 Γ′ ⊇ Γ Σ′ ⊇ Σ 𝜑 ′ ⊇ 𝜑

[Σ′ | Γ′] 𝜑 ′ ⊢ 𝑡 : 𝑇 𝑞 𝜺

Proof. By induction over the term typing derivation, using Lemma 2.3 where appropriate. □

Lemma 2.5 (Subtyping Narrowing).

Σ | Γ, 𝑥 : 𝑉 𝑝 , Γ′ ⊢ 𝑞 <: 𝑟 Σ | Γ ⊢ 𝑈 𝑜 𝜺1 <: 𝑉 𝑝 𝜺2

Σ | Γ, 𝑥 : 𝑈 𝑜 , Γ′ ⊢ 𝑞 <: 𝑟

Σ | Γ, 𝑥 : 𝑉 𝑝 , Γ′ ⊢ 𝑆 <: 𝑇 Σ | Γ ⊢ 𝑈 𝑜 𝜺1 <: 𝑉 𝑝 𝜺2

Σ | Γ, 𝑥 : 𝑈 𝑜 , Γ′ ⊢ 𝑆 <: 𝑇

Σ | Γ, 𝑥 : 𝑉 𝑝 , Γ′ ⊢ 𝑆 𝑞 𝜺3 <: 𝑇 𝑟 𝜺4 Σ | Γ ⊢ 𝑈 𝑜 𝜺1 <: 𝑉 𝑝 𝜺2

Σ | Γ, 𝑥 : 𝑈 𝑜 , Γ′ ⊢ 𝑆 𝑞 𝜺3 <: 𝑇 𝑟 𝜺4

Proof. By mutual induction over the respective derivations. □

Lemma 2.6 (Narrowing).

[Σ | Γ, 𝑥 : 𝑉 𝑝 , Γ′] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺1 Σ | Γ ⊢ 𝑈 𝑜 𝜺2 <: 𝑉 𝑝 𝜺3

[Σ | Γ, 𝑥 : 𝑈 𝑜 , Γ′] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺1

Proof. By induction over the term-typing derivation, using Lemma 2.5 where appropriate. □
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2.6.3 Substitution Lemmas. We consider type soundness for closed terms and apply “top-level”
substitutions, i.e., substituting closed values with qualifiers that do not contain term variables,
but only store locations. The proof of the substitution lemma critically relies on the distributivity
of substitution and the qualifier intersection operator for checking overlap, which is required to
proceed in the (t-app) case:

Lemma 2.7 (Top-Level Substitutions Distribute with Overlap).
𝑥 : 𝑇 𝑞 ∈ Γ 𝜃 = [𝑝/𝑥] 𝑝, 𝑞 ⊆ dom(Σ) 𝑝 ∩ 𝜑 ⊆ 𝑞 𝑟, 𝑟 ′ ⊆ 𝜑 𝑟 = 𝑟∗ 𝑟 ′ = 𝑟 ′∗

(𝑟 ∩ 𝑟 ′)𝜃 = 𝑟𝜃 ∩ 𝑟 ′𝜃

Qualifier substitution does not generally distribute with set intersection, due to the problematic
case when the substituted variable 𝑥 occurs in only one of the saturated sets 𝑟 and 𝑟 ′. Distributivity
holds if (1) we ensure that what is observed about the qualifier 𝑝 we substitute for 𝑥 is bounded by
what the context observes about 𝑥 , i.e., 𝑝 ∩ 𝜑 ⊆ 𝑞 for 𝑥 : 𝑇 𝑞 ∈ Γ, and (2) 𝑝, 𝑞 are top-level as above.
Furthermore, we require that the intersected qualifiers 𝑟 and 𝑟 ′ are reachability saturated, which is
given in the context of (t-app).

Lemma 2.8 (Top-Level Substitution forQualifier/Effect Subtyping).
Σ | Γ, 𝑥 : 𝑇 𝑞 ⊢ 𝑝 <: 𝑟 𝑞, 𝑞′ ⊆ dom(Σ) 𝜃 = [𝑞′/𝑥] Σ | Γ, 𝑥 : 𝑇 𝑞 ok

Σ | Γ𝜃 ⊢ 𝑝𝜃 <: 𝑟𝜃

Proof. By the fact that substitution is monotonic w.r.t. subset inclusion ⊆ and qualifier/effect
subtyping being that relation by definition. □

Lemma 2.9 (Top-Level Substitution for Subtyping).

Σ | Γ, 𝑥 : 𝑆 𝑞 ⊢ 𝑇 <: 𝑈 𝑞, 𝑝 ⊆ dom(Σ) 𝜃 = [𝑝/𝑥]
Σ | Γ𝜃 ⊢ 𝑇𝜃 <: 𝑈𝜃

Σ | Γ, 𝑥 : 𝑆 𝑞 ⊢ 𝑇 𝑝 𝜺1 <: 𝑈 𝑞 𝜺2 𝑞, 𝑝 ⊆ dom(Σ) 𝜃 = [𝑝/𝑥]
Σ | Γ𝜃 ⊢ 𝑇 𝑝𝜃 𝜺1𝜽 <: 𝑈 𝑞𝜃 𝜺2𝜽

Proof. By mutual induction over the respective subtyping derivations, using Lemma 2.8 where
appropriate. □

In the type preservation proof, 𝛽-reduction substitutes a function parameter for some value,
which requires a carefully formulated substitution lemma:

Lemma 2.10 (Top-Level Term Substitution).
[Σ | Γ, 𝑥 : 𝑆 𝑝∩𝑟 ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺 [Σ | ∅] 𝑝 ⊢ 𝑣 : 𝑆 𝑝 ∅ 𝜃 = [𝑝/𝑥]

𝑝 ⊆ dom(Σ) 𝑝 ∩ 𝜑 ⊆ 𝑝 ∩ 𝑟
[Σ | Γ𝜃 ] 𝜑𝜃 ⊢ 𝑡 [𝑣/𝑥] : (𝑇 𝑞 𝜺)𝜃

Proof. By induction over the derivation [Σ | Γ, 𝑥 : 𝑆 𝑝∩𝑟 ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺. Most cases are straight-
forward, exploiting that qualifier substitution is monotonous w.r.t. ⊆ and that the substitute 𝑝 for 𝑥
consists of store locations only. The case (t-app) critically requires Lemma 2.7 for (𝑝∩𝑞)𝜃 = 𝑝𝜃 ∩𝑞𝜃
in the induction hypothesis. The case (t-sub) requires the substitution lemma for subtyping
(Lemma 2.9). □
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Just as in Lemma 2.7 above, the substitution lemma imposes the observability condition 𝑝∩𝜑 ⊆ 𝑝∩𝑟 ,
i.e., 𝑡 observes nothing more about 𝑣 ’s reachability set than its assumption about 𝑥 , and it is oblivious
of 𝑝 \ 𝑟 . That is to say, substitution “grows” the parameter in (t-app) with overlap between 𝑝 and
the function qualifier 𝑟 , growing the result by 𝑝 \ 𝑟 , realizing implicit polymorphism over qualifiers.

2.6.4 Main Soundness Result.

Theorem 2.11 (Progress). If [Σ | ∅] dom(Σ) ⊢ 𝑡 : 𝑇 𝑞 𝜺, then either 𝑡 is a value, or for any store 𝜎
where [Σ | ∅] dom(Σ) ⊢ 𝜎 , there exists a term 𝑡 ′ and store 𝜎 ′ such that 𝜎 | 𝑡 −→v 𝜎

′ | 𝑡 ′.

Proof. By induction over the derivation [Σ | ∅] dom(Σ) ⊢ 𝑡 : 𝑇 𝑞 𝜺. □

Similar to [Bao et al. 2021], reduction preserves types up to qualifier growth by fresh allocations:

Theorem 2.12 (Preservation).
[Σ | ∅] dom(Σ) ⊢ 𝑡 : 𝑇 𝑞 𝜺 [Σ | ∅] dom(Σ) ⊢ 𝜎 𝜎 | 𝑡 −→v 𝜎

′ | 𝑡 ′

∃Σ′ ⊇ Σ. ∃𝑝 ⊆ dom(Σ′ \ Σ). [Σ′ | ∅] dom(Σ′ ) ⊢ 𝑡 ′ : 𝑇 𝑞,𝑝 𝜺, 𝑝 [Σ′ | ∅] dom(Σ′ ) ⊢ 𝜎 ′

Proof. By induction over the derivation [Σ | ∅] dom(Σ) ⊢ 𝑡 : 𝑇 𝑞 𝜺. Most of the cases are
straightforward. We discuss the beta reduction case of (t-app) where the substitution lemma
(Lemma 2.10) needs to be applied. To make the proof simpler, we assume explicit congruence
reduction rules here.
In this case, we have 𝑡 = (𝜆𝑥 .𝑡0) 𝑣 and their typings by induction hypotheses: [Σ | ∅] dom(Σ) ⊢

𝜆𝑥.𝑡0 :
(
𝑥 :𝑇 𝑝∗∩𝑞∗ →𝜺3 𝑈 𝑟

) 𝑞
𝜺1 and [Σ | ∅] dom(Σ) ⊢ 𝑣 : 𝑇 𝑝 𝜺2. We need to show

[Σ | ∅] dom(Σ) ⊢ 𝑡0 [𝑣/𝑥] : (𝑈 𝑟 𝜺, 𝑝) [𝑝/𝑥] .

Inverting the tying of the lambda value, we have the body term 𝑡0 typing

[Σ | 𝑥 : 𝑇 ′𝑝
′ ] 𝑞′∪{𝑥 } ⊢ 𝑡0 : 𝑈 ′ 𝑟

′
𝜺′,

and
𝑇 𝑞∩𝑝 <: 𝑇 ′𝑝

′
, 𝑞′ <: 𝑞, and Σ | 𝑥 : 𝑇 𝑝∗∩𝑞∗ ⊢ 𝑈 ′ 𝑟 ′𝜺′ <: 𝑈 𝑟 𝜺, 𝑝.

By narrowing the context and weakening the filter, we obtain a body term typing that is amenable
to apply the substitution lemma (Lemma 2.10):

[Σ | 𝑥 : 𝑇 𝑝∗∩𝑞∗] 𝑞∪{𝑥 } ⊢ 𝑡0 : 𝑈 ′ 𝑟
′
𝜺′ .

Then after applying Lemma 2.10, we use (t-sub) to up-cast the result type and effect, which proves
the goal.

□

Corollary 2.13 (Preservation of Separation). Interleaved executions preserve types and
disjointness:

[Σ | ∅] dom(Σ) ⊢ 𝑡1 : 𝑇 𝑞1
1 𝜺1 𝜎 | 𝑡1 −→v 𝑡

′
1 | 𝜎 ′ [Σ | ∅] dom(Σ) ⊢ 𝜎

[Σ | ∅] dom(Σ) ⊢ 𝑡2 : 𝑇 𝑞2
2 𝜺2 𝜎 ′ | 𝑡2 −→v 𝑡

′
2 | 𝜎 ′′ 𝑞1 ∩ 𝑞2 ⊆ ∅

∃𝑝1 𝑝2 𝜺′1 𝜺′2 Σ′ Σ′′ . [Σ′ | ∅] dom(Σ
′ ) ⊢ 𝑡 ′1 : 𝑇

𝑝1
1 𝜺′1 Σ′′ ⊇ Σ′ ⊇ Σ

[Σ′′ | ∅] dom(Σ′′ ) ⊢ 𝑡 ′2 : 𝑇
𝑝2
2 𝜺′2 𝑝1 ∩ 𝑝2 ⊆ ∅

Proof. By sequential application of preservation (Theorem 2.12) and the fact that a reduction step
increases the assigned qualifier by at most a fresh new location, thus preserving disjointness. □
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Introductions, Store Terms, Evaluation Contexts
𝜄 ::= 𝜆𝑥.𝑡 | 𝑐 | ref

ℓ
ℓ

𝜎 ::= ∅ | 𝜎, lets ℓ = 𝜄

𝐸 ::= □ | 𝐸 𝑡 | ℓ 𝐸 | ref𝐸 𝑡 | ref
ℓ
𝐸 | !𝐸 | 𝐸 := 𝑡 | ℓ := 𝐸 | let 𝑥 = 𝐸 in 𝑡

Well-Formed Store Entries and Stores [Σ | Γ] 𝜑 ⊢ ℓ : 𝜄 ∈ 𝜎 [Σ | Γ] 𝜑 ⊢ 𝜎

Σ(ℓ) = Ref 𝐵 ∅ [Σ | Γ] 𝜑 ⊢ ℓ′ : 𝐵 ∅ ∅ Σ(𝑤) = Alloc∅ 𝜎 (𝑤) = 𝜔

[Σ | Γ] 𝜑 ⊢ ℓ : ref𝑤 ℓ′ ∈ 𝜎

Σ(ℓ) = 𝑇 𝑞 [Σ | Γ] 𝜑 ⊢ 𝜄 : 𝑇 𝑞
∅ ∀ℓ,𝑤 . 𝜄 ≠ ref𝑤 ℓ

[Σ | Γ] 𝜑 ⊢ ℓ : 𝜄 ∈ 𝜎

|Σ| = |𝜎 |
(
[Σ | Γ] 𝜑 ⊢ ℓ : 𝜄 ∈ 𝜎

)
lets ℓ=𝜄∈𝜎

[Σ | Γ] 𝜑 ⊢ 𝜎

Reduction Rules 𝜎 | 𝑡 −→sv 𝜎 | 𝑡

𝜎, lets ℓ1 = 𝜆𝑥 .𝑡, 𝜎′ | 𝐸 [ ℓ1 ℓ2 ] −→sv 𝜎, lets ℓ1 = 𝜆𝑥.𝑡, 𝜎′ | 𝐸 [ 𝑡 [ℓ2/𝑥] ] (𝛽)
𝜎 | 𝐸 [ let 𝑥 = ℓ in 𝑡 ] −→sv 𝜎 | 𝐸 [ 𝑡 [ℓ/𝑥] ] (let)

𝜎 | 𝐸 [ 𝜄 ] −→sv 𝜎, lets ℓ = 𝜄 | 𝐸 [ ℓ ] (intro)
ℓ ∉ dom(𝜎)

𝜎, lets ℓ = ref𝑤 ℓ′, 𝜎′ | 𝐸 [ !ℓ ] −→sv 𝜎, lets ℓ = ref𝑤 ℓ′, 𝜎′ | 𝐸 [ ℓ′ ] (deref)
𝜎, lets ℓ = ref𝑤 ℓ′, 𝜎′ | 𝐸 [ ℓ := ℓ′′ ] −→sv 𝜎, lets ℓ = ref𝑤 ℓ′′, 𝜎′ | 𝐸 [ unit ] (assign)

Fig. 5. Call-by-value reduction for 𝜆∗𝜀 with store-allocated values.

3 THE DIRECT-STYLE 𝜆∗𝜀 -CALCULUS WITH STORE-ALLOCATED VALUES
As a first step towards transitioning into monadic normal form, we refine the previous system’s
operational semantics into one that has all values in the store, i.e., substitution becomes variable
renaming, because all intermediate results are named and bound in the store. We keep the same
type system as before and show its soundness with respect to the refined operational semantics
with store-allocated values.

3.1 Syntax
We introduce a slight change to the syntax of 𝜆∗𝜀 (Figure 2) that does not affect the typing rules,
namely changing what constitutes a value and re-categorizing former values and reference alloca-
tions as “introductions” 𝜄 for store-bound entities:

𝑣 ::= ℓ Values
𝜄 ::= 𝑐 | 𝜆𝑥 .𝑡 | ref ℓ ℓ Introductions

𝑡 ::= · · · | 𝑣 | 𝜄 Terms
𝜎 ::= ∅ | 𝜎, lets ℓ = 𝜄 Stores

Both mutable references and immutable constants are part of the store now, and we can discern by
types and context relations whether a location ℓ may be mutated at runtime or not.
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Since all constants are store-bound, we also expect that the first operand of ref is a location
binding the allocation capability/constant 𝜔 .

3.2 Dynamics
Figure 5 shows the operational semantics for 𝜆∗𝜀 with store-allocated values. All elimination forms,
now operate on store-bound introductions. For instance, the function application rule (𝛽) replaces
the call with the body of the function stored at ℓ1, and passes a location ℓ2 pointing to the argument
of the call. Substitution on terms simply becomes a renaming of a variable to a store location. The
new rule (intro) replaces the previous rule (ref), generalizing it to commit any introduction into
the store at a fresh location.

3.3 Metatheory
Since the type system has not changed, we can reuse most of the results developed in Section 2.6.

Lemma 3.1 (Top-Level Term Substitution).
[Σ | Γ, 𝑥 : 𝑆 𝑝∩𝑟 ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺 [Σ | ∅] 𝑝 ⊢ ℓ : 𝑆 𝑝 ∅ 𝜃 = [𝑝/𝑥]

𝑝 ⊆ dom(Σ) 𝑝 ∩ 𝜑 ⊆ 𝑝 ∩ 𝑟
[Σ | Γ𝜃 ] 𝜑𝜃 ⊢ 𝑡 [ ℓ /𝑥] : (𝑇 𝑞 𝜺)𝜃

Proof. This is a special case of Lemma 2.10. □

Theorem 3.2 (Preservation).
[Σ | ∅] dom(Σ) ⊢ 𝑡 : 𝑇 𝑞 𝜺 [Σ | ∅] dom(Σ) ⊢ 𝜎 𝜎 | 𝑡 −→sv 𝜎

′ | 𝑡 ′

∃Σ′ ⊇ Σ. ∃𝑝 ⊆ dom(Σ′ \ Σ). [Σ′ | ∅] dom(Σ′ ) ⊢ 𝑡 ′ : 𝑇 𝑞,𝑝 𝜺, 𝑝 [Σ′ | ∅] dom(Σ′ ) ⊢ 𝜎 ′

Proof. By induction over the derivation [Σ | ∅] dom(Σ) ⊢ 𝑡 : 𝑇 𝑞 𝜺. The proof is similar to the
proof for Theorem 2.12, with the difference that typing evidence for operands needs to be extracted
from the well-formed store 𝜎 . □

Finally, the preservation of separation Corollary 2.13 continues to hold in this system, with
exactly the same proof.

4 MONADIC NORMAL FORM
The penultimate step towards deriving the graph IR is restricting the 𝜆∗𝜀 language tomonadic normal
form (MNF), called 𝜆∗M (Figure 6). We establish soundness of 𝜆∗M by (1) showing that 𝜆∗𝜀 ’s reduction
relation with store-allocated values (−→sv, Figure 5) preserves MNF, (2) specifying provably type-
preserving translations between both languages, so that (3) we can resort to the previous section’s
soundness result for 𝜆∗𝜀 .

4.1 Syntax
We make use of the syntactic category of names in places where both variables and locations are
permitted, written in typewriter font.
MNF (Figure 6) is characterized by having all intermediate results and subterms of expressions

let-bound to variable names. Unlike A-normal form (ANF), which has strictly flat sequences of
let bindings with primitive operations, MNF permits binding nested computations. A (directed,
acyclic) graph can be read from graph terms 𝑔, by regarding let bindings as introducing a name for
either (1) a primitive graph node labelled with a primitive operation drawn from 𝑛, or (2) naming a
nested subgraph 𝑔. Variable occurrences in bound nodes correspond to edges pointing to the let
binding in scope.
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Monadic Normal Form 𝜆∗M
x, y, z ::= 𝑥 | ℓ Names
𝜄 ::= 𝑐 | 𝜆𝑥.𝑔 | refℓ ℓ Introductions
𝑣 ::= ℓ Values
𝑛 ::= 𝜄 | x x | refx x | ! x | x B x Graph Nodes
𝑔 ::= x | let 𝑥 = 𝑏 in 𝑔 Graph Terms
𝑏 ::= 𝑛 | 𝑔 Bindings

MNF Typing [Σ | Γ] 𝜑 ⊢M 𝑛 : 𝑇 𝑞 𝜺 [Σ | Γ] 𝜑 ⊢M 𝑔 : 𝑇 𝑞 𝜺 [Σ | Γ] 𝜑 ⊢M 𝑏 : 𝑇 𝑞 𝜺

𝑐 ∈ 𝐵
[Σ | Γ] 𝜑 ⊢M 𝑐 : 𝐵 ∅ ∅

(n-cst)

[Σ | Γ , 𝑥 : 𝑇 𝑝 ] 𝑞,𝑥 ⊢M 𝑔 : 𝑈 𝑟 𝜺
𝑞 ⊆ 𝜑

[Σ | Γ] 𝜑 ⊢M 𝜆𝑥.𝑔 : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟 ) 𝑞 ∅
(n-abs)

x :
(
𝑧 : 𝑇 𝑝∗∩𝑞∗ →𝜺 𝑈 𝑟

) 𝑞 ∈ [Σ | Γ] 𝜑
y : 𝑇 𝑝 ∈ [Σ | Γ] 𝜑 𝜃 = [𝑝/𝑧]
𝑧 ∉ fv(𝑈 ) 𝜺 ⊆ 𝑞, 𝑧 𝑟 ⊆ 𝜑, 𝑧

[Σ | Γ] 𝜑 ⊢M x y : (𝑈 𝑟 𝜺)𝜃
(n-app)

x : 𝐵 ∅ ∈ [Σ | Γ] 𝜑
y : Alloc𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 ⊢M refy x : (Ref 𝐵) ∅ y
(n-ref)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 ⊢M ! x : 𝐵 ∅ x
(n-!)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑
y : 𝐵 ∅ ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 ⊢M x B y : Unit∅ x
(n-:=)

x : 𝑇 𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 ⊢M x : 𝑇 x ∅
(g-ret)

[Σ | Γ] 𝜑 ⊢M 𝑏 : 𝑆 𝑝 𝜺1
[Σ | Γ , 𝑥 : 𝑆 𝑝∗∩𝜑∗] 𝜑,𝑥 ⊢M 𝑔 : 𝑇 𝑞 𝜺2

𝜃 = [𝑝/𝑥] 𝑥 ∉ fv (𝑇 )
[Σ | Γ] 𝜑 ⊢M let 𝑥 = 𝑏 in 𝑔 : (𝑇 𝑞 𝜺1 ▷ 𝜺2)𝜃

(g-let)

[Σ | Γ] 𝜑 ⊢M 𝑏 : 𝑆 𝑝 𝜺1
Σ | Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2

𝑞, 𝜺2 ⊆ 𝜑

[Σ | Γ] 𝜑 ⊢M 𝑏 : 𝑇 𝑞 𝜺2
(b-sub)

Name Lookup x : 𝑇 𝑞 ∈ [Σ | Γ] 𝜑

𝑥 : 𝑇 𝑞 ∈ Γ 𝑥 ⊆ 𝜑

𝑥 : 𝑇 𝑞 ∈ [Σ | Γ] 𝜑
(l-var)

ℓ : 𝑇 𝑞 ∈ Σ ℓ ⊆ 𝜑

ℓ : 𝑇 𝑞 ∈ [Σ | Γ] 𝜑
(l-loc)

Fig. 6. The syntax and typing rules of the monadic normalform 𝜆∗M. Cf. Figure 2 for the subtyping rules.

In this work, we choose an even stricter form of MNF than usual, i.e., sequences of let bindings
in graph terms 𝑔 always end with a name. We found that this more regular form is easier to work
with when specifying optimization rules.

4.2 Reduction Preserves MNF
The reduction relation for 𝜆∗𝜀 with store-allocated values (Figure 5) preserves MNF, and can thus be
restricted to obtain the call-by-value reduction relation for 𝜆∗M:

Lemma 4.1 (Reduction Preserves MNF). Let 𝑔 be a graph term in 𝜆∗M, and 𝜎 a store that only
binds 𝜆∗M introductions, such that 𝜎 | 𝑔 −→sv 𝜎

′ | 𝑡 for some 𝜎 ′ and term 𝑡 . Then it holds that
(1) 𝜎 ′ is a store binding only 𝜆∗M introductions.
(2) 𝑡 is a graph term of 𝜆∗M.

Proof. Since the reduction step begins with a graph term 𝑔, it can be only decomposed into
a redex and evaluation context according to 𝐸 ::= □ | let 𝑥 = 𝐸 in 𝑔, and no other cases apply.
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𝑡 { 𝑔𝑐 { let 𝑥 = 𝑐 in 𝑥

x { x

𝑡 { 𝑔

𝜆𝑥.𝑡 { let 𝑦 = 𝜆𝑥.𝑔 in 𝑦

𝑡 { 𝑔

!𝑡 { let 𝑥1 = 𝑔 in let 𝑥2 = !𝑥1 in 𝑥2

𝑡1 { 𝑔1 𝑡2 { 𝑔2

let 𝑥 = 𝑡1 in 𝑡2 { let 𝑥 = 𝑔1 in 𝑔2

𝑡1 { 𝑔1 𝑡2 { 𝑔2

𝑡1 𝑡2 { let 𝑥1 = 𝑔1 in let 𝑥2 = 𝑔2 in let 𝑥3 = 𝑥1 𝑥2 in 𝑥3

𝑡1 { 𝑔1 𝑡2 { 𝑔2

ref𝑡1 𝑡2 { let 𝑥1 = 𝑔1 in let 𝑥2 = 𝑔2 in let 𝑥3 = ref𝑥1 𝑥2 in 𝑥3

𝑡1 { 𝑔1 𝑡2 { 𝑔2

𝑡1 := 𝑡2 { let 𝑥1 = 𝑔1 in let 𝑥2 = 𝑔2 in let 𝑥3 = (𝑥1 := 𝑥2) in 𝑥3

Fig. 7. Translation from 𝜆∗𝜀 into 𝜆∗M. Variable names introduced on the right-hand side are always fresh.

Redexes in the hole can only be bindings 𝑏, i.e., either a node 𝑛 or a nested graph term 𝑔′. It is easy
to see that each possible reduction rule focuses on such a binding, and each rule plugs the hole
with another binding 𝑏′ on the right-hand side, thus preserving MNF. Furthermore, 𝜎 ′ is either
equal to 𝜎 , or a modification of the latter where each binding is in MNF. □

4.3 Translation from Direct Style to MNF
This section considers the syntax-directed translation of 𝜆∗𝜀 into 𝜆∗M (Figure 7).

Lemma 4.2 (Type Preservation of the MNF Translation). If [Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺 and 𝑡 { 𝑔,
then [Σ | Γ] 𝜑 ⊢M 𝑔 : 𝑇 𝑞 𝜺.

Proof. Straightforward by induction over the typing derivation [Σ | Γ] 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺. We
exemplify the proof for applications (t-app). In this case

𝑡1 𝑡2 { let 𝑥1 = 𝑔1 in let 𝑥2 = 𝑔2 in let 𝑥3 = 𝑥1 𝑥2 in 𝑥3

where 𝑡1 { 𝑔1 and 𝑡2 { 𝑔2.
(1) We have [Σ | Γ] 𝜑 ⊢ 𝑡1 :

(
𝑥 :𝑇 𝑝∗∩𝑞∗ →𝜺3 𝑈 𝑟

) 𝑞
𝜺1.

(2) We have [Σ | Γ] 𝜑 ⊢ 𝑡2 : 𝑇 𝑝 𝜺2.
(3) We have 𝑥 ∉ fv(𝑈 ), 𝜺3 ⊆ 𝑞, 𝑥 , 𝑟 ⊆ 𝜑, 𝑥 , and 𝜃 = [𝑝/𝑥].
(4) By IH: [Σ | Γ] 𝜑 ⊢M 𝑔1 :

(
𝑥 :𝑇 𝑝∗∩𝑞∗ →𝜺3 𝑈 𝑟

) 𝑞
𝜺1.

(5) By IH: [Σ | Γ] 𝜑 ⊢M 𝑔2 : 𝑇 𝑝 𝜺2.
(6) By weakening: [Σ | Γ, 𝑥1 :

(
𝑥 :𝑇 𝑝∗∩𝑞∗ →𝜺3 𝑈 𝑟

) 𝑞 ] 𝜑,𝑥1 ⊢M 𝑔2 : 𝑇 𝑝 𝜺2.
(7) Let Γ′ := Γ, 𝑥1 :

(
𝑥 :𝑇 𝑝 ∩𝑞 →𝜺3 𝑈 𝑟

) 𝑞
, 𝑥2 : 𝑇 𝑝 .

(8) By rule (n-app) and (3): [Σ | Γ′] 𝜑,𝑥1,𝑥2 ⊢M 𝑥1 𝑥2 : 𝑈 𝑟𝜃 𝜺3𝜃 .
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(9) By (g-let) and (g-ret): [Σ | Γ′] 𝜑,𝑥1,𝑥2 ⊢M let 𝑥3 = 𝑥1 𝑥2 in 𝑥3 : 𝑈 𝑟𝜃 𝜺3𝜃 .
(10) With (6) and (g-let):

[Σ | Γ, 𝑥1 :
(
𝑥 :𝑇 𝑝∗∩𝑞∗ →𝜺3 𝑈 𝑟

) 𝑞 ] 𝜑,𝑥1 ⊢M let 𝑥2 = 𝑔2 in let 𝑥3 = 𝑥1 𝑥2 in 𝑥3 : (𝑈 𝑟𝜃 𝜺2▷𝜺3𝜃 ) [𝑝/𝑥2]

(11) With (4) and (g-let):

[Σ | Γ] 𝜑 ⊢M let𝑥1 = 𝑔1 in let𝑥2 = 𝑔2 in let𝑥3 = 𝑥1 𝑥2 in𝑥3 : (𝑈 𝑟𝜃 [𝑝/𝑥2 ] 𝜺1▷(𝜺2▷𝜺3𝜃 ) [𝑝/𝑥2]) [𝑞/𝑥1]

(12) Since 𝑥1 and 𝑥2 were picked fresh, and 𝑥 is not free in 𝜺1 and 𝜺2 by (1) and (2), we have

(𝑈 𝑟𝜃 [𝑝/𝑥2 ] 𝜺1 ▷ (𝜺2 ▷ 𝜺3𝜃 ) [𝑝/𝑥2]) [𝑞/𝑥1] = 𝑈 𝑟𝜃 𝜺1 ▷ 𝜺2 ▷ 𝜺3𝜃 = (𝑈 𝑟 𝜺1 ▷ 𝜺2 ▷ 𝜺3)𝜃 .

That is, (11) proves the goal.
□

4.4 Soundness
Instead of proving progress and preservation directly, we assert that terms in monadic normal
form can always be typed in the same manner in both the direct style and MNF type systems. The
intention is that we have the same type system, but restricted in the terms.

Lemma 4.3 (Type-preserving Embedding of MNF Terms).
(1) [Σ | Γ] 𝜑 ⊢M 𝑛 : 𝑇 𝑞 𝜺 iff [Σ | Γ] 𝜑 ⊢ 𝑛 : 𝑇 𝑞 𝜺.
(2) [Σ | Γ] 𝜑 ⊢M 𝑔 : 𝑇 𝑞 𝜺 iff [Σ | Γ] 𝜑 ⊢ 𝑔 : 𝑇 𝑞 𝜺.

Proof. Each direction is proved by mutual induction over the respective typing derivation. □

Together with Lemma 4.1, it follows that the type soundness and preservation of separation
results of the direct style system (Section 3.3) carry over to the MNF version.

Corollary 4.4 (MNF Progress). If [Σ | ∅] dom(Σ) ⊢M 𝑔 : 𝑇 𝑞 𝜺, then either 𝑔 is a value, or for any
store 𝜎 where [Σ | ∅] dom(Σ) ⊢ 𝜎 , there exists a graph term𝑔′ and store 𝜎 ′ such that 𝜎 | 𝑔 −→sv 𝜎

′ | 𝑔′.

Corollary 4.5 (MNF Preservation).

[Σ | ∅] dom(Σ) ⊢M 𝑔 : 𝑇 𝑞 𝜺 [Σ | ∅] dom(Σ) ⊢ 𝜎 𝜎 | 𝑔 −→sv 𝜎
′ | 𝑔′

∃Σ′ ⊇ Σ. ∃𝑝 ⊆ dom(Σ′ \ Σ). [Σ′ | ∅] dom(Σ′ ) ⊢M 𝑔′ : 𝑇 𝑞,𝑝 𝜺, 𝑝 [Σ′ | ∅] dom(Σ′ ) ⊢ 𝜎 ′

Corollary 4.6 (MNF Preservation of Separation). Interleaved executions preserve types and
disjointness:

[Σ | ∅] dom(Σ) ⊢M 𝑔1 : 𝑇
𝑞1
1 𝜺1 𝜎 | 𝑔1 −→sv 𝜎

′ | 𝑔′1 [Σ | ∅] dom(Σ) ⊢ 𝜎

[Σ | ∅] dom(Σ) ⊢M 𝑔2 : 𝑇
𝑞2
2 𝜺2 𝜎 ′ | 𝑔2 −→sv 𝜎

′′ | 𝑔′2 𝑞1 ∩ 𝑞2 ⊆ ∅
∃𝑝1 𝑝2 𝜺′1 𝜺′2 Σ′ Σ′′ . [Σ′ | ∅] dom(Σ

′ ) ⊢M 𝑔′1 : 𝑇
𝑝1
1 𝜺′1 Σ′′ ⊇ Σ′ ⊇ Σ

[Σ′′ | ∅] dom(Σ′′ ) ⊢M 𝑔′2 : 𝑇
𝑝2
2 𝜺′2 𝑝1 ∩ 𝑝2 ⊆ ∅

5 MONADIC NORMAL FORMWITH HARD DEPENDENCIES
This section presents our graph IR 𝜆∗G which enriches the monadic normal form (MNF) of the
previous section with effect dependencies.
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Graph IR 𝜆∗G
x, y, z ::= 𝑥 | ℓ Names
𝜄 ::= 𝑐 | 𝜆𝑥.(𝑔 • 𝛿) | refℓ ℓ Introductions
𝑣 ::= ℓ Values
𝑛 ::= 𝜄 | x x | refx x | ! x | x B x Graph Nodes
𝑔 ::= x | let 𝑥 = 𝑏 • 𝛿 in 𝑔 Graph Terms
𝑏 ::= 𝑛 | 𝑔 Bindings
Δ, 𝛿 ::= x ↦→ x Dependencies

Typing [Σ | Γ] 𝜑 • Δ ⊢ (𝑛 | 𝑔) : 𝑇 𝑞 𝜺

𝑐 ∈ 𝐵
[Σ | Γ] 𝜑 • Δ ⊢ 𝑐 : 𝐵 ∅ ∅

(n-cst)

[Σ | Γ , 𝑥 : 𝑇 𝑝 ] 𝑞,𝑥 • ↦→𝑥 ⊢ 𝑔 : 𝑈 𝑟 𝜺
𝑞 ⊆ 𝜑 𝛿 ⊑ 𝜺∗ ↦→ 𝑥

[Σ | Γ] 𝜑 • Δ ⊢ 𝜆𝑥 .𝑔 • 𝛿 : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟 ) 𝑞 ∅

(n-abs)

x :
(
𝑧 : 𝑇 𝑝∗∩𝑞∗ →𝜺 𝑈 𝑟

) 𝑞 ∈ [Σ | Γ] 𝜑
y : 𝑇 𝑝 ∈ [Σ | Γ] 𝜑 𝜃 = [𝑝/𝑧]
𝑧 ∉ fv(𝑈 ) 𝜺 ⊆ 𝑞, 𝑧 𝑟 ⊆ 𝜑, 𝑧

[Σ | Γ] 𝜑 • Δ ⊢ x y : (𝑈 𝑟 𝜺)𝜃
(n-app)

x : Alloc𝑞 ∈ [Σ | Γ] 𝜑
y : 𝐵 ∅ ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ refx y : (Ref 𝐵) ∅ x
(n-ref)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ ! x : 𝐵 ∅ x
(n-!)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑
y : 𝐵 ∅ ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ x B y : Unit∅ x
(n-:=)

x : 𝑇 𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ x : 𝑇 x ∅
(g-ret)

[Σ | Γ] 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑝 𝜺1
[Σ | Γ , 𝑥 : 𝑆 𝑝∗∩𝜑∗] 𝜑,𝑥 • Δ, (𝜺1∗, 𝑥) ↦→ 𝑥 ⊢ 𝑔 : 𝑇 𝑞 𝜺2

𝜃 = [𝑝/𝑥] 𝑥 ∉ fv (𝑇 ) 𝛿 ⊑ Δ|𝜺1∗
[Σ | Γ] 𝜑 • Δ ⊢ let 𝑥 = 𝑏 • 𝛿 in 𝑔 : (𝑇 𝑞 𝜺1 ▷ 𝜺2)𝜃

(g-let)

[Σ | Γ] 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑝 𝜺1
Σ | Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2

𝑞, 𝜺2 ⊆ 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ 𝑏 : 𝑇 𝑞 𝜺2
(b-sub)

Name Lookup (cf. Figure 6) x ∈ [Σ | Γ] 𝜑

Well-Typed Runtime Configuration [Σ | Γ] 𝜑 ⊢ 𝑧.𝑔 • 𝛿 : 𝑇 𝑞 𝜺

[Σ | Γ] 𝜑 • ↦→𝑧 ⊢ 𝑔 : 𝑇 𝑞 𝜺 𝛿 ⊑ 𝜺 ↦→ 𝑧 𝑞 = 𝑞∗ 𝜺 = 𝜺∗
[Σ | Γ] 𝜑 ⊢ 𝑧.𝑔 • 𝛿 : 𝑇 𝑞 𝜺

Well-formed Contexts Σ | Γ • Δ.𝑧 ok

dom(Δ) ⊆ dom(Σ), dom(Γ) cod(Δ) ⊆ dom(Σ), dom(Γ), 𝑧
Σ | Γ • Δ.𝑧 ok

Fig. 8. The syntax and typing rules of the graph IR 𝜆∗G . Cf. Figure 2 for the subtyping rules.

5.1 Dependencies
Data dependencies are expressed by ordinary variable occurrences in terms. Tracking effect depen-
dencies requires extra term annotations. Intuitively, a (hard) effect dependency 𝑥 ↦→ 𝑦 indicates
that an effect on the node 𝑥 (e.g., a reference, or global capability) is induced, and that node 𝑦 is the
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Dependency Synthesis [Σ | Γ] 𝜑 • Δ ⊢ (𝑛 | 𝑔) : 𝑇 𝑞 𝜺 { (𝒏 | 𝒈) • 𝛿

𝑐 ∈ 𝐵
[Σ | Γ] 𝜑 • Δ ⊢ 𝑐 : 𝐵 ∅ ∅{ 𝑐 • ∅

({-cst)

[Σ | Γ , 𝑥 : 𝑇 𝑝 ] 𝑞,𝑥 • ↦→𝑥 ⊢ 𝑔 : 𝑈 𝑟 𝜺 { 𝒈 • 𝛿
𝑞 ⊆ 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ 𝜆𝑥 .𝑔 : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟 ) 𝑞 ∅

{ (𝜆𝑥.𝒈 • 𝛿) • ∅
({-abs)

x :
(
𝑧 : 𝑇 𝑝∗∩𝑞∗ →𝜺 𝑈 𝑟

) 𝑞 ∈ [Σ | Γ] 𝜑
y : 𝑇 𝑝 ∈ [Σ | Γ] 𝜑 𝜃 = [𝑝/𝑧]
𝑧 ∉ fv(𝑈 ) 𝜺 ⊆ 𝑞, 𝑧 𝑟 ⊆ 𝜑, 𝑧

[Σ | Γ] 𝜑 • Δ ⊢ x y : (𝑈 𝑟 𝜺)𝜃
{ x y • Δ| (𝜺𝜃 )∗

({-app)

x : Alloc𝑞 ∈ [Σ | Γ] 𝜑
y : 𝐵 ∅ ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ refx y : (Ref 𝐵) ∅ x
{ refx y • Δ|x∗

({-ref)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ ! x : 𝐵 ∅ x
{ ! x • Δ|x∗

({-!)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑
y : 𝐵 ∅ ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ x B y : Unit∅ x
{ x B y • Δ|x∗

({-:=)

x : 𝑇 𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ x : 𝑇 x ∅{ x • ∅
({-ret)

[Σ | Γ] 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑝 𝜺1 { 𝒃 • 𝛿1
[Σ | Γ , 𝑥 : 𝑆 𝑝∗∩𝜑∗] 𝜑,𝑥 • Δ, (𝜺1∗, 𝑥) ↦→ 𝑥 ⊢ 𝑔 : 𝑇 𝑞 𝜺2

{ 𝒈 • 𝛿2
𝜃 = [𝑝/𝑥] 𝑥 ∉ fv (𝑇 )

[Σ | Γ] 𝜑 • Δ ⊢ let 𝑥 = 𝑏 in 𝑔 : (𝑇 𝑞 𝜺1 ▷ 𝜺2)𝜃
{ (let 𝑥 = 𝒃 • 𝛿1 in 𝒈) • 𝛿1, 𝛿2 [𝑥 { Δ|𝑝∗]

({-let)

[Σ | Γ] 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑝 𝜺1 { 𝒃 • 𝛿1
Σ | Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2

𝑞, 𝜺2 ⊆ 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ 𝑏 : 𝑇 𝑞 𝜺2 { 𝒃 • Δ|𝜺2∗
({-sub)

Name Lookup (cf. Figure 6) x ∈ [Σ | Γ] 𝜑

Fig. 9. Type-and-effect-directed dependency synthesis from 𝜆∗M into 𝜆∗G .

previous node in the graph at which an effect on 𝑥 occurred. That is to say, 𝑥 ↦→ 𝑦 does not indicate
there is an edge between 𝑥 and 𝑦, but rather that there is an edge from the current node to which
𝑥 ↦→ 𝑦 is attached pointing to 𝑦 and its (effect) label is 𝑥 . Oftentimes we will just say “dependency”
and omit the “hard” and “effect” qualifiers.

We bundle these dependencies into finite maps 𝛿 from variables to variables, and annotate them
to atomic nodes or nested graphs at let bindings. Dependencies come with a standard "update"
operator which is associative:

(𝛿1, 𝛿2) (𝑥) :=
{
𝛿2 (𝑥) 𝑥 ∈ dom(𝛿2)
𝛿1 (𝑥) otherwise.

and a restriction operator of the domain to a given set (abusing set notation):

𝛿 |𝛼 := {𝑥 ↦→ 𝑦 ∈ 𝛿 | 𝑥 ∈ 𝛼},

and we also define two removal operators, i.e.,

𝛿 − 𝛼 := {𝑥 ↦→ 𝑦 ∈ 𝛿 | 𝑦 ∉ 𝛼},

which removes all mappings pointing into 𝛼 , and

𝛿 \ 𝛼 := 𝛿 |dom(𝛿 )\𝛼 ,
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Store Terms, Graph Term Contexts, Binding Contexts

𝜎 ::= ∅ | 𝜎, lets ℓ = 𝜄

𝐺 ::= □ • 𝛿 | (let 𝑥 = 𝐺 in 𝑔) • 𝛿
𝐵 ::= (let 𝑥 = □ in 𝑔) • 𝛿 | (let 𝑥 = 𝐵 in 𝑔) • 𝛿

Reduction Rules 𝜎 | 𝑧.𝑔 • 𝛿 −→G 𝜎 | 𝑧.𝑔 • 𝛿

𝜎 | 𝑧.𝐵 [ ℓ1 ℓ2 • 𝛿1 ] −→G 𝜎 | 𝑧.𝐵 [ (𝑔 • 𝛿2) [𝑥 { 𝛿1] [ℓ2/𝑥] [ℓ2/𝑥]t ] (𝛽)
𝜎 = 𝜎1, lets ℓ1 = 𝜆𝑥 .𝑔 • 𝛿2, 𝜎2
dom(𝛿1) ⊆ dom(𝜎), cod(𝛿1) ⊆ {𝑧}

𝜎 | 𝑧.𝐺 [ let 𝑥 = ℓ • 𝛿 in 𝑔 ] −→G 𝜎 | 𝑧.𝐺 [𝑔[𝑥 { 𝛿] [ℓ/𝑥] [ℓ/𝑥]t ] (let)
dom(𝛿) ⊆ dom(𝜎), cod(𝛿) ⊆ {𝑧}

𝜎 | 𝑧.𝐺 [ let 𝑥 = 𝜄 • 𝛿 in 𝑔 ] −→G 𝜎, lets ℓ = 𝜄 | 𝑧.𝐺 ′ [𝑔[𝑥 { 𝛿] [ℓ/𝑥] [ℓ/𝑥]t ] (intro)
ℓ ∉ dom(𝜎), cod(𝛿) ⊆ {𝑧}, 𝐺 ′ = 𝐺 ⟨𝜄 : 𝑧.ℓ⟩

𝜎, lets ℓ = ref𝑤 ℓ′, 𝜎′ | 𝑧.𝐵 [ !ℓ • 𝛿 ] −→G 𝜎, lets ℓ = ref𝑤 ℓ′, 𝜎′ | 𝑧.𝐵 [ ℓ′ • 𝛿 ] (deref)
dom(𝛿) ⊆ dom(𝜎), cod(𝛿) ⊆ {𝑧}

𝜎, lets ℓ = ref𝑤 ℓ′, 𝜎′ | 𝑧.𝐵 [ ℓ := ℓ′′ • 𝛿 ] −→G 𝜎, lets ℓ = ref𝑤 ℓ′′, 𝜎′ | 𝑧.𝐵 [ unit • 𝛿 ] (assign)
dom(𝛿) ⊆ dom(𝜎), cod(𝛿) ⊆ {𝑧}

Contextual Effect Propagation 𝐺 ⟨𝜄 : 𝑧.ℓ⟩

𝐺 ⟨𝑐 : 𝑧.ℓ⟩ = 𝐺

𝐺 ⟨𝜆𝑥 .𝑔 • 𝛿 : 𝑧.ℓ⟩ = 𝐺

(□ • 𝛿)⟨ref𝑤 ℓ1 : 𝑧.ℓ2⟩ = □ • 𝛿, ℓ2 ↦→ 𝑧

((let 𝑥 = 𝐺 in 𝑔) • 𝛿)⟨ref𝑤 ℓ1 : 𝑧.ℓ2⟩ = (let 𝑥 = 𝐺 ⟨ref𝑤 ℓ1 : 𝑧.ℓ2⟩ in 𝑔) • 𝛿, ℓ2 ↦→ 𝑧

Well-Formed Store Entries and Stores [Σ | Γ] 𝜑 • Δ ⊢ ℓ : 𝜄 ∈ 𝜎 [Σ | Γ] 𝜑 • Δ ⊢ 𝜎

Σ(ℓ) = Ref 𝐵 ∅ [Σ | Γ] 𝜑 • Δ ⊢ ℓ′ : 𝐵 ∅ ∅ Σ(𝑤) = Alloc∅ 𝜎 (𝑤) = 𝜔

[Σ | Γ] 𝜑 • Δ ⊢ ℓ : ref𝑤 ℓ′ ∈ 𝜎

Σ(ℓ) = 𝑇 𝑞 [Σ | Γ] 𝜑 • Δ ⊢ 𝜄 : 𝑇 𝑞
∅ ∀ℓ,𝑤 . 𝜄 ≠ ref𝑤 ℓ

[Σ | Γ] 𝜑 • Δ ⊢ ℓ : 𝜄 ∈ 𝜎

|Σ| = |𝜎 |
(
[Σ | Γ] 𝜑 • Δ ⊢ ℓ : 𝜄 ∈ 𝜎

)
lets ℓ=𝜄∈𝜎

[Σ | Γ] 𝜑 • Δ ⊢ 𝜎

Fig. 10. Call-by-value reduction for 𝜆∗G with runtime dependency checking.

which removes all entries pointing from 𝛼 . In symmetry with substitutions on terms and qualifiers,
there is a notion of substitution (or rewiring, rerouting), over dependencies:

𝛿1 [𝑥 { 𝛿2] := 𝛿1 − {𝑥}, {𝑦 ↦→ 𝑧 ∈ 𝛿2 | 𝑦 ↦→ 𝑥 ∈ 𝛿1},

which is rerouting the dependency target 𝑥 via 𝛿2. For instance,

(𝑎 ↦→ 𝑏, 𝑐 ↦→ 𝑥,𝑦 ↦→ 𝑥) [𝑥 { (𝑐 ↦→ 𝑎,𝑦 ↦→ 𝑏)] = (𝑎 ↦→ 𝑏, 𝑐 ↦→ 𝑎,𝑦 ↦→ 𝑏).

That is, rewiring substitutes some of the targets in dependency mappings, which happens when
the variable 𝑥 is replaced, e.g., when 𝑥 is the formal parameter of a function at a call site. The
function body may have dependencies pointing to 𝑥 , and these must be rerouted using the call-site’s
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dependencies. Dually, 𝑥 might also be in the domain of a dependency, and the monadic semantics
will rename it to some store location holding the value of the call site argument. For this case, we
also lift qualifier substitutions to act on the domain of dependencies, i.e.,

𝛿 [𝑞/𝑥] := 𝛿 \ 𝑥, {𝑦 ↦→ 𝛿 (𝑥) | 𝑦 ∈ 𝑞}
so that all variables and locations in 𝑞 will point to 𝑥 ’s target, if it has an entry.

Effect-dependency calculation. Static effects 𝜺 and contextual information on last uses deter-
mine effect dependencies 𝛿 at graph nodes. We outline the basic process in the following.
A few auxiliary definitions are in order:

𝛼 ↦→ 𝑥 := {𝑦 ↦→ 𝑥 | 𝑦 ∈ 𝛼}
Σ, Γ ↦→ 𝑥 := dom(Σ) ∪ dom(Γ) ↦→ 𝑥

Σ | Γ ⊢ ↦→𝑥 := Σ, Γ ↦→ 𝑥, Σ, Γ are implicit
Σ | Γ ⊢𝛿 ↑𝑧 := 𝛿, {𝑥 ↦→ 𝑧 | 𝑥 ∈ (dom(Σ) ∪ dom(Γ)) \ dom(𝛿)}, Σ, Γ are implicit

Firstly, we overload the finite maps notation to specify a map with domain 𝛼 pointing to the
single variable 𝑥 , and analogously the map pointing all the variables and locations bound in Γ
and Σ to 𝑥 , for which we often use the shorthand notation ↦→𝑥 omitting those contexts when they
are unambiguous. The ↑𝑧 operator is used to ensure that a dependency is defined for at least the
variables and location in context, adding entries pointing to a common block start variable 𝑧.

If a nested graph named 𝑥 has effect 𝜺, then we record that the reachable variables affected by
𝜺∗5 were last used at 𝑥 (plus 𝑥 was last used at itself, explained below). So if Δ records the last
use of each variable in scope (essentially a structural coeffect which is also just a finite map from
variables to variables), then we update it to Δ, (𝜺∗, 𝑥 ↦→ 𝑥). Synthesizing the dependency for node
𝑥 itself is just a matter of projecting the last-use coeffect Δ.

Concretely, consider let 𝑥 = 𝑔1 in 𝑔2 with last uses Δ, and let 𝜺 be the effect of 𝑔1. We first
calculate the annotated version of 𝑔1:

𝑔1 { 𝑔′1 • Δ|𝜺∗
which attaches the current last uses with respect to 𝜺. When proceeding with the continuation 𝑔2,
𝑥 is added into the context, and we need to define its last-use coeffect, which is simply 𝑥 itself. We
will discuss the precise calculation rules of our type system in the next section.

5.2 Syntax and Statics
Figure 8 shows the type checking relation, and it is easy too see that the 𝜆∗G-calculus is identical to
the 𝜆∗M-calculus (Figure 6), when erasing all the teal parts pertaining to dependencies. At the term
level, we attach dependencies 𝛿 to let bindings (representing the dependencies for all the effects
of the bound graph term) and the body of 𝜆-abstractions (representing the dependencies of the
abstraction’s latent effects)

5.2.1 Type Checking. The typing judgment now carries an additional dependency map Δ attached
to the context (basically a form of coeffect), which is used to track the last uses of variables and
locations in the context/store. We stipulate that at all times the domain of Δ ranges over the domain
of Γ and Σ. Last uses are threaded as an input through typing derivations, and the only rules at
which they are accessed are those for terms with dependency annotations, i.e., (n-abs) and (g-let).
Those annotated dependencies should always conform to the effect of the term in question, and
5Since the systems in this report lazily assign qualifiers and effects, we need to consider the transitive reachability closure
(Figure 3) to get ahold of all relevant dependencies.
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as a rule of thumb, we regard the effect 𝜺’s transitive reachability closure (a set of variables and
locations) as a slice of the currently known last uses Δ, i.e., restricting the domain of Δ to the effect
in question yields all the relevant dependencies at the current node.
In the rule (n-abs) for 𝜆-abstractions, we check the body with all the last uses pointing to the

formal parameter 𝑥 . This is because we generally do not know the call site and actual argument in
advance, and the most natural choice is abstracting the last use of the free variables in the body by
𝑥 in symmetry to term abstraction. As we have motivated in the main paper and will shortly see in
the operational semantics (Section 5.3), the “latent” dependency 𝛿 annotated to the function’s body
has to be rewired at the call site. Following the “rule of thumb” above, we check that the annotated
dependency 𝛿 is conforming to the body’s dependency in relation to its last uses, i.e., 𝛿 is a sub-map
of 𝜺∗ ↦→ 𝑥 .
Similarly, rule (g-let) checks that the annotated dependency for the bound node/nested graph

is conforming to its effect, i.e., it is a sub-map of the last uses for 𝜺1∗ in Δ. When typing the let
body 𝑔, we update the last uses for the variables affected by 𝜺1∗ and let them point to the binding 𝑥 ,
precisely because those variables have been last used here. Furthermore, since 𝑥 is newly introduced
in the body 𝑔, we also have to specify a last use for it, which is 𝑥 itself.

5.2.2 Dependency Synthesis. While the typing relation provides a means to check dependencies, it
does not provide a method to compute them. For this purpose we define a type/qualifier/effect-
directed synthesis relation (Figure 9) for 𝜆∗M terms which lack any dependency annotations and
produces dependency-annotated 𝜆∗G terms along with the dependency map for effects on free
variables as output, given an initial map Δ of last uses and typing context as input. Synthesizing the
dependencies follows the “rule of thumb” from above, i.e., synthesized and inserted dependencies
are always the currently known last uses of the variables in the term’s effect (cf. Section 5.4.1).

5.3 Dynamics
The call-by-value operational semantics for 𝜆∗G (Figure 10) is a refinement of the operational
semantics for 𝜆∗M with store-allocated values (Figure 5). The changes are twofold: (1) dependencies
are part of the term syntax now, and have to be accounted for by reductions, and (2) the semantics
additionally checks for each reduction step whether all the effect dependencies have been already
evaluated and committed to the store. By type soundness (cf. Section 5.4), well-typed terms do not
exhibit dependency violations, i.e., dependencies correctly reflect the observed runtime execution
order of effect operations.
Reduction occurs over runtime configurations 𝜎 | 𝑧.𝑔 • 𝛿 , which compared to the 𝜆∗M-calculus

attaches a distinguished start variable 𝑧 to the graph term 𝑔 along with its dependency 𝛿 . We
stipulate that 𝑧 is always chosen so that it is not a free variable of 𝑔. It is a mechanism to check
whether a dependency has already been evaluated. That is, at the top level, we set the initial use of
all the free variables/locations to 𝑧, and that will be reflected in the synthesized dependencies of a
term. The invariant is that the next operation will have all its dependencies purely on store variables
and these will point to 𝑧, which is outside of the program. The meaning is that all dependencies
of the current node are in the store, and each of the reduction rules checks this property. In the
following, we discuss the changes made to the reduction rules compared to Figure 5.
In the function application rule (𝛽), we now have to account for the latent dependencies of

the function and the dependencies at the call site. Thus, in symmetry with dependent function
application, we rewire the function body and its dependency 𝛿2 with 𝛿1 for 𝑥 . Since dependencies
are type-level information annotated in the term syntax, we also have to perform the qualifier
substitution part of the static dependent function application, i.e., we substitute the argument’s
location ℓ2 for 𝑥 in the domain of dependencies, if present. To distinguish qualifier substitution in
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dependencies from term substitution/renaming of variables, we attach the subscript t to the latter.
Hence, substitution becomes simultaneous rewiring, qualifier substitution, and renaming on terms
in the graph IR. Accordingly, we do the same in (let) and (intro).
Rule (intro) has changed compared to Figure 5 in that it simultaneously performs the (let)

elimination along with the introduction of the fresh location. The reason is that from the perspective
of static typing, introducing the new location will make it appear in reachability qualifiers and
effects, and consequently in dependencies. So the reduction step has to patch up the dependencies
in the body of the let expression, because 𝑥 now aliases ℓ , which it did not beforehand. Furthermore,
if 𝜄 is a mutable reference, using it makes it also appear in the codomain of effects dependencies,
and this change needs propagating into all dependencies along the spine of the evaluation context
up to the top level, because ℓ is globally visible.

Finally, modulo checking effect dependencies, rules (deref) and (assign) have not changed.

5.4 Metatheory
5.4.1 Properties of Dependency Synthesis. Dependency synthesis induces a function over MNF
typing derivations which given an input map of last uses always produce an annotated graph IR
term with the same type, qualifier, and effect. As a corollary, we obtain a type/effect/qualifier-
preserving and dependency-synthesizing translation from the direct style 𝜆∗𝜀 system into the 𝜆∗G
graph IR.

Lemma 5.1 (Synthesis Invariant). Dependencies are completely determined by the context and
effect, as follows:

(1) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑛 : 𝑇 𝑞 𝜺 { 𝒏 • 𝛿, then 𝛿 = Δ|𝜺∗.
(2) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺 { 𝒈 • 𝛿, then 𝛿 = Δ|𝜺∗.
Proof. By mutual induction over the respective derivation. Most cases are straightforward. The

case for rule ({-let) requires careful reasoning about dependency maps:
• Case ({-let): We need to show 𝛿1, 𝛿2 [𝑥 { Δ|𝑝 ] = Δ| (𝜺1▷𝜺2𝜃 )∗ for 𝜃 = [𝑝/𝑥].

(1) By IH: 𝛿1 = Δ|𝜺1∗.
(2) By IH: 𝛿2 = (Δ, (𝜺1∗, 𝑥) ↦→ 𝑥) |𝜺2∗.
(3) By scoping: 𝑥 ∉ dom(Δ), and 𝑥 ∉ cod(Δ).
(4) Case distinction:

(a) 𝑥 ∉ 𝜺2: Thus,
𝛿1, 𝛿2 [𝑥 { Δ|𝑝 ] = 𝛿1, 𝛿2 by 𝑥 ∉ 𝜺2

= Δ|𝜺1∗, (Δ, (𝜺1∗, 𝑥) ↦→ 𝑥) |𝜺2∗ by (1), (2)
= Δ|𝜺1∗,Δ|𝜺2∗\𝜺1∗ by 𝑥 ∉ 𝜺2 and def. of _, _
= Δ|𝜺1∗,𝜺2∗ by definition of _|_
= Δ|𝜺1∗▷𝜺2∗ by definition of _ ▷ _
= Δ| (𝜺1▷𝜺2 )∗ by properties of _∗
= Δ| (𝜺1▷𝜺2𝜃 )∗ ✓ by 𝑥 ∉ 𝜺2

(b) 𝑥 ∈ 𝜺2 :
(i) We have that

𝛿2 = (Δ, (𝜺1∗, 𝑥) ↦→ 𝑥) |𝜺2∗ by (2)
= (Δ \ 𝜺1∗, (𝜺1∗, 𝑥) ↦→ 𝑥) |𝜺2∗ by def. of _, _
= (Δ \ 𝜺1∗)|𝜺2∗, (𝜺1∗ ↦→ 𝑥) |𝜺2∗, (𝑥 ↦→ 𝑥) |𝜺2∗ by prop. of _|_
= Δ|𝜺2∗\𝜺1∗, (𝜺1∗ ↦→ 𝑥) |𝜺2∗, (𝑥 ↦→ 𝑥) |𝜺2∗ by prop. of _|_
= Δ|𝜺2∗\𝜺1∗, (𝜺1∗ ∩ 𝜺2∗ ↦→ 𝑥), 𝑥 ↦→ 𝑥 by 𝑥 ∈ 𝜺2, and prop. of _|_
= Δ|𝜺2∗\𝜺1∗,𝑥 , (𝜺1∗ ∩ 𝜺2∗ ↦→ 𝑥), 𝑥 ↦→ 𝑥 by 𝑥 ∉ codΔ
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(ii) From 𝑥 ∈ 𝜺2 and properties of reachability saturation, we have that 𝑝∗ ⊆ 𝜺2∗.
(iii) From that, and 𝑥 ∈ 𝜺2 , and properties of saturation, we have either 𝑝∗ ⊆

𝜺1∗ ∩ 𝜺2∗ or 𝑝∗ ∩ 𝜺1∗ ∩ 𝜺2∗ = ∅. Case distinction:
(iv) Case 𝑝∗ ⊆ 𝜺1∗ ∩ 𝜺2∗: Thus, 𝜺1∗ ∩ 𝜺2∗ = 𝑝∗, 𝑞 where 𝑝∗ ∩ 𝑞 = ∅

(A) That with (4).(b).(i) yields 𝛿2 = Δ|𝜺2∗\𝜺1∗,𝑥 , (𝑝∗, 𝑞 ↦→ 𝑥), 𝑥 ↦→ 𝑥

(B) Thus,

𝛿2 [𝑥 { Δ|𝑝 ] = (Δ|𝜺2∗\𝜺1∗,𝑥 , (𝑝∗, 𝑞 ↦→ 𝑥), 𝑥 ↦→ 𝑥) [𝑥 { Δ|𝑝∗] by (A)
= Δ|𝜺2∗\𝜺1∗,𝑥 [𝑥 { Δ|𝑝∗], (𝑝∗, 𝑞 ↦→ 𝑥) [𝑥 { Δ|𝑝∗], 𝑥 ↦→ 𝑥 [𝑥 { Δ|𝑝∗] by prop. of {
= Δ|𝜺2∗\𝜺1∗,𝑥 [𝑥 { Δ|𝑝∗], (𝑝∗, 𝑞 ↦→ 𝑥) [𝑥 { Δ|𝑝∗] by 𝑥 ∉ dom(Δ|𝑝∗)
= Δ|𝜺2∗\𝜺1∗,𝑥 [𝑥 { Δ|𝑝∗], (𝑝∗ ↦→ 𝑥) [𝑥 { Δ|𝑝∗] by (iv)
= Δ|𝜺2∗\𝜺1∗,𝑥 [𝑥 { Δ|𝑝∗],Δ|𝑝∗ by def. of {
= Δ|𝜺2∗\𝜺1∗,𝑥 ,Δ|𝑝∗ by 𝑥 ∉ cod(Δ)

(C) From that, and (1), we conclude

𝛿1, 𝛿2 [𝑥 { Δ|𝑝∗] = Δ|𝜺1∗,Δ|𝜺2∗\𝜺1∗,𝑥 ,Δ|𝑝∗
= Δ|𝜺1∗,𝜺2∗\𝑥,𝑝∗ by definition of _|_ and prop. of sets
= Δ|𝜺1∗▷𝜺2∗[𝑝∗/𝑥 ] by def. of substitution and effect composition
= Δ| (𝜺1▷𝜺2𝜃 )∗ ✓ by prop. of saturation

(v) Case 𝑝∗ ∩ 𝜺1∗ ∩ 𝜺2∗ = ∅: Thus with (ii), we have 𝑝∗ ⊆ 𝜺2∗ \ 𝜺1∗.
(A) Thus,

𝛿2 [𝑥 { Δ|𝑝∗] = (Δ|𝜺2∗\𝜺1∗,𝑥 , (𝜺1∗ ∩ 𝜺2∗ ↦→ 𝑥), 𝑥 ↦→ 𝑥) [𝑥 { Δ|𝑝∗] by (i)
= Δ|𝜺2∗\𝜺1∗,𝑥 [𝑥 { Δ|𝑝∗] by (v) and 𝑥 ∉ dom(Δ|𝑝∗)
= Δ|𝜺2∗\𝜺1∗,𝑥 by 𝑥 ∉ cod(Δ)

(B) From that, and (1), we conclude

𝛿1, 𝛿2 [𝑥 { Δ|𝑝∗] = Δ|𝜺1∗,Δ|𝜺2∗\𝜺1∗,𝑥
= Δ|𝜺1∗,𝜺2∗\𝑥,𝑝∗ by (v)
= Δ|𝜺1∗▷𝜺2∗[𝑝∗/𝑥 ] by def. of substitution and effect composition
= Δ| (𝜺1▷𝜺2𝜃 )∗ ✓ by prop. of saturation

□

The above proof of Lemma 5.1, justifies that we could alternatively pick the dependency
Δ| (𝜺1▷𝜺2𝜃 )∗ as the synthesis result in the conclusion of rule ({-let), and certifies that sequential
dependency map composition and rewiring are consistent with effect composition and substitution,
provided that the effects are saturated in the context.

Lemma 5.2 (Soundness of Synthesis). Synthesis produces well-typed annotated programs:
(1) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑛 : 𝑇 𝑞 𝜺 { 𝒏 • 𝛿, then [Σ | Γ] 𝜑 • Δ ⊢ 𝒏 : 𝑇 𝑞 𝜺.
(2) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺 { 𝒈 • 𝛿, then [Σ | Γ] 𝜑 • Δ ⊢ 𝒈 : 𝑇 𝑞 𝜺.

Proof. By straightforward mutual induction over the respective derivation, making use of
Lemma 5.1 where appropriate. □

Lemma 5.3 (Synthesis is Total).
(1) If [Σ | Γ] 𝜑 ⊢M 𝑛 : 𝑇 𝑞 𝜺 then ∀Δ. ∃𝒏. ∃𝛿. [Σ | Γ] 𝜑 • Δ ⊢ 𝑛 : 𝑇 𝑞 𝜺 { 𝒏 • 𝛿 and 𝒏 erases back

to 𝑛.
(2) If [Σ | Γ] 𝜑 ⊢M 𝑔 : 𝑇 𝑞 𝜺 then ∀Δ. ∃𝒈. ∃𝛿. [Σ | Γ] 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺 { 𝒈 • 𝛿 and 𝒈 erases back

to 𝑔.
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Proof. By straightforward mutual induction over the respective derivations, exploiting that
typing rules of each system are in one-to-one correspondence. □

Corollary 5.4 (End-to-end Type Preservation). For any well-formed context and compatible
Δ, there is a type/effect/qualifier-preserving translation from the direct-style 𝜆∗𝜀 -calculus into the 𝜆

∗
G

graph IR.

Proof. By lemmas 4.2, 5.3, and 5.2. □

5.4.2 Substitution and Rewiring.

Lemma 5.5 (Top-Level Rewiring and Substitution).
If Σ | Γ, 𝑥 : 𝑆 𝑝∩𝑟 • Δ.𝑧 ok, [Σ | ∅] 𝑝 • ∅ ⊢ ℓ : 𝑆 𝑝 ∅, and 𝜃 = [𝑝/𝑥] where 𝑝 ⊆ dom(Σ) and
𝑝 ∩ 𝜑 ⊆ 𝑝 ∩ 𝑟 , and dom(𝛿) ⊆ dom(Σ), and cod(𝛿) ⊆ {𝑧} then

[Σ | Γ, 𝑥 : 𝑆 𝑝∩𝑟 ] 𝜑 • Δ ⊢ 𝑛 : 𝑇 𝑞 𝜺

[Σ | Γ𝜃 ] 𝜑𝜃 • Δ[𝑥 { 𝛿 ↑𝑧]𝜃 ⊢ 𝑛[𝑥 { 𝛿]𝜃 [ℓ/𝑥]t : (𝑇 𝑞 𝜺)𝜃
(1)

[Σ | Γ, 𝑥 : 𝑆 𝑝∩𝑟 ] 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺

[Σ | Γ𝜃 ] 𝜑𝜃 • Δ[𝑥 { 𝛿 ↑𝑧]𝜃 ⊢ 𝑔[𝑥 { 𝛿]𝜃 [ℓ/𝑥]t : (𝑇 𝑞 𝜺)𝜃
(2)

Proof. The proof proceeds by mutual induction over the respective derivation. Ignoring de-
pendencies, each case uses similar reasoning steps as the previous substitution lemma proof for
the system with store-allocated values (Lemma 3.1). We focus here only on the interesting cases
involving dependencies, which are the typing rules for 𝜆-abstraction and let bindings.
• Case (n-abs): That is, 𝑛 = 𝜆𝑦.𝑔 • 𝛿 ′.

(1) We have [Σ | Γ , 𝑥 : 𝑆 𝑝∩𝑟 , 𝑦 : 𝑇 𝑝′ ] 𝑞,𝑦 • ↦→𝑦 ⊢ 𝑔 : 𝑈 𝑟 ′ 𝜺′.
(2) We have 𝛿 ′ ⊑ 𝜺′∗ ↦→ 𝑦.
(3) By IH: [Σ | Γ𝜃, 𝑦 : 𝑇𝜃 𝑝′𝜃 ] 𝑞𝜃,𝑦 • (↦→𝑦 [𝑥 { 𝛿 ↑𝑧]𝜃 ) ⊢ 𝑔[𝑥 { 𝛿]𝜃 [ℓ/𝑥]t : (𝑈 𝑟 ′ 𝜺′)𝜃 .
(4) Since 𝑥 ≠ 𝑦, it holds that (↦→𝑦 [𝑥 { 𝛿 ↑𝑧]𝜃 ) = ↦→𝑦.
(5) By (2), no entry in 𝛿 ′ points to 𝑥 , because it is a submap of 𝜺′∗ ↦→ 𝑦 and 𝑦 ≠ 𝑥 .
(6) Thus 𝛿 ′ [𝑥 { 𝛿]𝜃 = 𝛿 ′𝜃 , and by (2) and monotonicity of substitution, 𝛿 ′𝜃 ⊑ 𝜺′𝜃 ↦→ 𝑦.
(7) Hence 𝑛[𝑥 { 𝛿]𝜃 [ℓ/𝑥]t = 𝜆𝑦.(𝑔[𝑥 { 𝛿]𝜃 [ℓ/𝑥]t) • 𝛿 ′𝜃 .
(8) By (3),(6),(7), and (n-abs) the proof goal follows.

• Case (g-let): That is, 𝑔 = let 𝑦 = 𝑏 • 𝛿 ′ in 𝑔′.
(1) We have [Σ | Γ , 𝑥 : 𝑆 𝑝∩𝑟 ] 𝜑 • Δ ⊢ 𝑏 : 𝑇 𝑞 𝜺1.
(2) We have [Σ | Γ , 𝑥 : 𝑆 𝑝∩𝑟 , 𝑦 : 𝑇 𝑞] 𝜑,𝑦 • Δ, (𝜺1∗, 𝑦) ↦→ 𝑦 ⊢ 𝑔′ : 𝑈 𝑟 𝜺2.
(3) We have 𝛿 ′ ⊑ Δ|𝜺1∗.
(4) By IH: [Σ | Γ𝜃 ] 𝜑𝜃 • Δ[𝑥 { 𝛿 ↑𝑧]𝜃 ⊢ 𝑏 [𝑥 { 𝛿]𝜃 [ℓ/𝑥]t : (𝑇 𝑞 𝜺1)𝜃 .
(5) By IH: [Σ | Γ𝜃 ,𝑦 : 𝑇𝜃 𝑞𝜃 ] 𝜑𝜃,𝑦 • (Δ, (𝜺1∗, 𝑦) ↦→ 𝑦) [𝑥 { 𝛿 ↑𝑧]𝜃 ⊢ 𝑔′ [𝑥 { 𝛿]𝜃 [ℓ/𝑥]t :
(𝑈 𝑟 𝜺2)𝜃 .

(6) From 𝑥 ≠ 𝑦 and the properties of rewiring and qualifier substitution on dependencies,
it follows that

(Δ, (𝜺1∗, 𝑦) ↦→ 𝑦) [𝑥 { 𝛿 ↑𝑧]𝜃 = Δ[𝑥 { 𝛿 ↑𝑧]𝜃, (𝜺1∗𝜃,𝑦) ↦→ 𝑦.

(7) From (3) and monotonicity of substitution, we have 𝛿 ′𝜃 ⊑ Δ𝜃 |𝜺1∗𝜃 .
(8) By (4), (5), (6), (7), and (g-let) the proof goal follows.

□
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5.4.3 Context Typing and Effect Introductions. We have generative effect introductions that modify
the runtime context, and thus need lemmas for plugging/decomposition and growing the stack of
dependencies by fresh effect dependencies from generative effects (i.e., reference allocations in this
system).

Definition 5.6 (Context Typings). We define the typings of graph and binding contexts (Figure 10)
relative to an ambient block start variable 𝑧, as follows:

(1) [Σ | Γ] 𝜑 • Δ ⊢ 𝑧.𝐺 [ · ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2 iff [Σ | Γ, 𝑥 : 𝑆 𝑝 ] 𝜑 • Δ, 𝑥 ↦→ 𝑧 ⊢ 𝑧.𝐺 [ 𝑥 ] : 𝑇 𝑞 𝜺2
and 𝜺1∗ = dom(𝛿) for the dependency 𝛿 at 𝐺 ’s hole.

(2) [Σ | Γ] 𝜑 • Δ ⊢ 𝑧.𝐵 [ · ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2 iff [Σ | Γ, 𝑥 : 𝑆 𝑝 ] 𝜑 • Δ, 𝑥 ↦→ 𝑧 ⊢ 𝑧.𝐵 [ 𝑥 • 𝛿 ] : 𝑇 𝑞 𝜺
for some 𝛿 ⊑ Δ|𝜺1∗.

Lemma 5.7 (Contextual Effect Propagation).

[Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 [ · ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2 ℓ ∉ dom(Σ)
[Σ, ℓ : 𝑈 𝑟 | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 ⟨𝜄 : 𝑧.ℓ⟩[ · ] : 𝑆 𝑝 𝜺1, ℓ ⇒ 𝑇 𝑞 𝜺2, ℓ

Proof. Let [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 [ · ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2, and ℓ ∉ dom(Σ). We proceed by induction
over 𝐺 :
• Case𝐺 = □•𝛿 : Hence𝐺 ⟨𝜄 : 𝑧.ℓ⟩ = □•𝛿, ℓ ↦→ 𝑧, and Σ | Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2, and 𝜺1 = dom(𝛿).
By the properties of subtyping, it holds that Σ, ℓ : 𝑈 𝑟 | ∅ ⊢ 𝑆 𝑝 𝜺1, ℓ <: 𝑇 𝑞 𝜺2, ℓ . Using
(g-ret) and (b-sub) proves the goal.
• Case 𝐺 = (let 𝑥 = 𝐺 ′ in 𝑔) • 𝛿 : Hence 𝐺 ⟨𝜄 : 𝑧.ℓ⟩ = (let 𝑥 = 𝐺 ′⟨𝜄 : 𝑧.ℓ⟩ in 𝑔) • 𝛿, ℓ ↦→ 𝑧, and

(1) By Def. 5.6 and typing inversion:
(a) [Σ | 𝑦 : 𝑆 𝑝 ] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 ′ [𝑦 ] : 𝑆 ′𝑝′ 𝜺′2 for some 𝑆 ′𝑝′ 𝜺′2.
(b) [Σ | 𝑦 : 𝑆 𝑝 , 𝑥 : 𝑆 ′𝑝′ ] 𝜑 • (↦→𝑧, 𝜺′2∗ ↦→ 𝑥) ⊢ 𝑔 : 𝑇 𝑞′ 𝜺3.
(c) 𝑞 = 𝑞′ [𝑝′/𝑥], 𝜺2 = 𝜺′2 ▷ 𝜺3 [𝑝′/𝑥].
(d) 𝜺1∗ = dom(𝛿 ′) for the dependency 𝛿 ′ at the hole of 𝐺 ′.

(2) By IH: [Σ, ℓ : 𝑈 𝑟 | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 ′⟨𝜄 : 𝑧.ℓ⟩[ · ] : 𝑆 𝑝 𝜺1, ℓ ⇒ 𝑆 ′𝑝
′
𝜺′2, ℓ .

(3) By weakening on (1b): [Σ, ℓ : 𝑈 𝑟 | 𝑦 : 𝑆 𝑝 , 𝑥 : 𝑆 ′𝑝′ ] 𝜑 • (↦→𝑧, (𝜺′2∗, ℓ, 𝑟∗) ↦→ 𝑥) ⊢ 𝑔 : 𝑇 𝑞′ 𝜺3.
(4) By (g-let): [Σ, ℓ : 𝑈 𝑟 | 𝑦 : 𝑆 𝑝 ] 𝜑 • ↦→𝑧 ⊢ let 𝑥 = 𝐺 ′⟨𝜄 : 𝑧.ℓ⟩[𝑦 ] in 𝑔 : 𝑇 𝑞′𝜃 𝜺′2, ℓ ▷ 𝜺3𝜃 for

𝜃 = [𝑝′/𝑥], and the goal follows from that.
□

Lemma 5.8 (Decomposition).
(1) If [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 [𝑔 ] : 𝑇 𝑞 𝜺, then [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 [ · ] : 𝑆 𝑝 𝜺′ ⇒ 𝑇 𝑞 𝜺 for some

𝑆 𝑝 𝜺′, and [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝑔 • 𝛿 : 𝑆 𝑝 𝜺′, where 𝛿 is the dependency at the hole of 𝐺 .
(2) If [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐵 [ 𝑏 • 𝛿 ] : 𝑇 𝑞 𝜺, then [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐵 [ · ] : 𝑆 𝑝 𝜺′ ⇒ 𝑇 𝑞 𝜺 for some

𝑆 𝑝 𝜺′, where [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑏 : 𝑆 𝑝 𝜺′ and 𝛿 ⊑ ↦→𝑧 |𝜺′∗.
Proof. Both cases are proved by induction over the respective context. □

Lemma 5.9 (Plugging).
(1) If [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 [ · ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2 and [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝑔 • 𝛿 : 𝑆 𝑝 𝜺1 where 𝛿 is

the dependency at the hole of 𝐺 , then [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 [𝑔 ] : 𝑇 𝑞 𝜺2.
(2) If [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐵 [ · ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2 and [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑏 : 𝑆 𝑝 𝜺1, then for all

𝛿 ⊑ 𝜺1∗ ↦→ 𝑧 it holds that [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐵 [ 𝑏 • 𝛿 ] : 𝑇 𝑞 𝜺2.

Proof. Both cases are proved by induction over the respective context. □

Lemma 5.10 (Qualifier-Growing Replacement).
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(1) If [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 [𝑔 ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2 and [Σ′ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑔′ : 𝑆 𝑝,𝑟 𝜺1, 𝑟 where
Σ′ ⊇ Σ and 𝑟 ⊆ dom(Σ′ \ Σ), then [Σ′ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐺 ′ [𝑔′ ] : 𝑇 𝑞,𝑟 𝜺2, 𝑟 where 𝐺 ′ is the
result of contextual effect propagation for the fresh introduction form 𝑟 .

(2) If [Σ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐵 [ 𝑏 • 𝛿 ] : 𝑆 𝑝 𝜺1 ⇒ 𝑇 𝑞 𝜺2 and [Σ′ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑏′ : 𝑆 𝑝,𝑟 𝜺1, 𝑟 where
Σ′ ⊇ Σ and 𝑟 ⊆ dom(Σ′ \ Σ), then [Σ′ | ∅] 𝜑 • ↦→𝑧 ⊢ 𝑧.𝐵′ [ 𝑏′ • 𝛿 ] : 𝑇 𝑞,𝑟 𝜺2, 𝑟 where 𝐵′ is the
result of contextual effect propagation for the fresh introduction form 𝑟 .

Proof. By decomposition (Lemma 5.8), contextual effect propagation (Lemma 5.7), and plugging
(Lemma 5.9). □

5.4.4 Soundness.

Theorem 5.11 (Progress). If [Σ | ∅] dom(Σ) ⊢ 𝑧.𝑔•𝛿 : 𝑇 𝑞 𝜺, then either𝑔 is a location ℓ ∈ dom(Σ),
or for any store 𝜎 where [Σ | ∅] dom(Σ) ⊢ 𝜎 , there exists a graph term 𝑔′, store 𝜎 ′, and dependency 𝛿 ′

such that 𝜎 | 𝑧.𝑔 • 𝛿 −→G 𝜎
′ | 𝑧.𝑔′ • 𝛿 ′.

Proof. By induction over the typing derivation. □

Theorem 5.12 (Preservation).
[Σ | ∅] dom(Σ) ⊢ 𝑧.𝑔 • 𝛿 : 𝑇 𝑞 𝜺 Σ | ∅ • ↦→𝑧.𝑧 ok [Σ | ∅] dom(Σ) • ↦→𝑧 ⊢ 𝜎 𝜎 | 𝑧.𝑔 • 𝛿 −→G 𝜎

′ | 𝑧.𝑔′ • 𝛿 ′

∃Σ′ ⊇ Σ. ∃𝑝 ⊆ dom(Σ′ \ Σ). [Σ′ | ∅] dom(Σ′ ) ⊢ 𝑧.𝑔′ • 𝛿 ′ : 𝑇 𝑞,𝑝 𝜺, 𝑝

Σ′ | ∅ • ↦→𝑧.𝑧 ok [Σ′ | ∅] dom(Σ′ ) • ↦→𝑧 ⊢ 𝜎 ′

Proof. By inspecting the rule applied for the step 𝜎 | 𝑧.𝑔 • 𝛿 −→G 𝜎
′ | 𝑧.𝑔′ • 𝛿 ′ and the qualifier-

growing replacement Lemma 5.10, it is sufficient to prove that each rule is type/effect/qualifier
preserving up to fresh store introductions in a minimal context:
• Case (𝛽): In which case we have a well-typed application ℓ1 ℓ2 • 𝛿1 in the hole. We proceed
by induction over its typing derivation, which ends either in (n-app) or (b-sub). No store
introduction occurs, hence the context type is preserved.
– Case (n-app):

(1) We have cod(𝛿1) ⊆ {𝑧}.
(2) We have ℓ1 :

(
𝑥 : 𝑇 𝑝∗∩𝑞∗ →𝜺 𝑈 𝑟

) 𝑞 ∈ [Σ | ∅] dom(Σ) .
(3) We have ℓ2 : 𝑇 𝑝 ∈ [Σ | ∅] dom(Σ) .
(4) We have 𝑥 ∉ fv(𝑈 ), 𝜺 ⊆ 𝑞, 𝑥 , 𝑟 ⊆ 𝜑, 𝑥 , and 𝜃 = [𝑝/𝑥].
(5) By (1) and environment relation, we have 𝜎 (ℓ1) = 𝜆𝑥 .𝑔 • 𝛿2.
(6) By inversion: [Σ | 𝑥 : 𝑇 ′𝑝′ ] 𝑞′,𝑥 • ↦→𝑥 ⊢ 𝑔 : 𝑈 ′ 𝑟 ′ 𝜺′, 𝛿2 ⊑ 𝜺′∗ ↦→ 𝑥 , Σ | ∅ ⊢

𝑇 𝑝∗∩𝑞∗ ∅ <: 𝑇 ′𝑝′ ∅, and Σ | 𝑥 : 𝑇 𝑝∗∩𝑞∗ ⊢ 𝑈 ′ 𝑟 ′ 𝜺′ <: 𝑈 𝑟 𝜺, and 𝑞′ ⊆ 𝑞.
(7) By narrowing, weakening, subsumption: [Σ | 𝑥 : 𝑇 𝑝∗∩𝑞∗] dom(Σ),𝑥 • ↦→𝑥 ⊢ 𝑔 : 𝑈 𝑟 𝜺.
(8) By (1) and the substitution and rewiring Lemma 5.5:

[Σ | ∅] dom(Σ) • ↦→𝑧 ⊢ 𝑔[𝑥 { 𝛿1] [ℓ2/𝑥] [ℓ2/𝑥]t : 𝑈 𝑟 [𝑝/𝑥 ] 𝜺 [𝑝/𝑥] .
(9) By (6) and transitivity, we have 𝛿2 ⊑ 𝜺∗ ↦→ 𝑥 , and hence

𝛿1 [𝑥 { 𝛿1] [ℓ2/𝑥] [ℓ2/𝑥]t ⊑ 𝜺∗[𝑝/𝑥] ↦→ 𝑧

(10) By (8), (9), and plugging Lemma 5.9 we can now prove this case.
– Case (b-sub): By IH and subsumption.

• Case (let): Follows from the substitution and rewiring Lemma 5.5.
• Case (intro): In which case we have a well-typed let binding let 𝑥 = 𝜄 • 𝛿 in 𝑔 in the hole.

By induction over the derivation, only (b-sub) or (g-let) applies. The first is trivial, and we
consider the latter case. By the contextual effect propagation Lemma 5.7, we have increased
the qualifiers and effects of the right-hand-side context typing with the fresh new store
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location, after which we can proceed as in the (let) case with the substitution and rewiring
Lemma 5.5 and conclude.
• Case (deref): In which case we have a well-typed dereference ! ℓ • 𝛿 with cod(𝛿) ⊆ {𝑧} in
the hole. By induction over the derivation, only (b-sub) or (n-!) applies. The first is again
trivial, and the latter case is straightforward, since by the environment predicate we have
that thew hole is plugged with a store value of the same type.
• Case (assign): Similar to the previous case.

□

Corollary 5.13 (Preservation of Separation). Interleaved executions preserve types and dis-
jointness:
[Σ | ∅] dom(Σ) ⊢ 𝑧.𝑔1 • 𝛿1 : 𝑇 𝑞1

1 𝜺1 𝜎 | 𝑧.𝑔1 • 𝛿1 −→G 𝜎
′ | 𝑧.𝑔′1 • 𝛿1′ [Σ | ∅] dom(Σ) ⊢ 𝜎 Σ | ∅ • ↦→𝑧.𝑧 ok

[Σ | ∅] dom(Σ) ⊢ 𝑧.𝑔2 • 𝛿2 : 𝑇 𝑞2
2 𝜺2 𝜎 ′ | 𝑧.𝑔2 • 𝛿2 −→G 𝜎

′′ | 𝑧.𝑔′2 • 𝛿2′ 𝑞1 ∩ 𝑞2 ⊆ ∅
∃𝑝1 𝑝2 𝜺′1 𝜺′2 Σ′ Σ′′ . [Σ′ | ∅] dom(Σ

′ ) ⊢ 𝑧.𝑔′1 • 𝛿1′ : 𝑇
𝑝1
1 𝜺′1 Σ′′ ⊇ Σ′ ⊇ Σ

[Σ′′ | ∅] dom(Σ′′ ) ⊢ 𝑧.𝑔′2 • 𝛿2′ : 𝑇
𝑝2
2 𝜺′2 𝑝1 ∩ 𝑝2 ⊆ ∅

Corollary 5.14 (Dependency Safety). Evaluation respects the order of effect dependencies for
well-typed graph IR terms, i.e., an effectful graph node is executed only if all its dependencies are
resolved in the store.

6 EXTENSIONWITH SOFT DEPENDENCIES
We extend the graph IR 𝜆∗G from the previous section with soft dependencies. During code generation,
a node that is only soft-depended by other nodes is considered dead, and therefore is not scheduled
(cf. Section 9). If node 𝐴 hard-depends on node 𝐵, then 𝐵 must be executed (or scheduled) before
𝐴. This is the default notion of dependency for the base 𝜆∗G system (Section 5), and entails that no
effect operation can be skipped. This is evidently too rigid, and as motivated in the main paper, soft
dependencies gives us more slack to outright omit effects that are not observable, e.g., write-after-
write (WAR) on a mutable reference cell. If 𝐴 soft-depends on 𝐵, then 𝐵 should never be scheduled
after 𝐴, but 𝐵 might not be scheduled even if 𝐴 is scheduled. Being able to tell that some effectful
part of a higher-order program can be omitted is immensely useful.
The entire formal system and reasoning principles of 𝜆∗G carry over into a system with hard

and soft dependencies as presented in this section. The difference is the change in the effect and
dependency structure, i.e., effects are split into reads and writes, which induce hard dependencies
(the previous section’s notion) and soft dependencies, respectively. That is to say, we can regard
these new structures as a product composition of the previous with new structures.

In future work, we would like to develop a generic theory of graph IRs that is parametric in such
effect and dependency structures. Bao et al. [2021]’s direct style system already proposes one half
of the solution by adopting Gordon [2021]’s effect quantales. We anticipate that a general graph IR
would require a “dependency quantuale” that mirrors a given effect quantale.

In the following, we focus on the key differences to the previous section.

6.1 Effects and Dependencies for Reads and Writes
The nature of effects changes from a simple “effectful use of/on a variable” to a more refined
distinction, classifying the effect on the variables as either a read or a write effect. Due to alias-
ing/reachability, there is usually more than one variable involved, and compound expressions
accumulate their effects. Thus, we change the effect domain to labelled pairs r : 𝑞;w : 𝑝 of qualifiers,
grouping variables/locations by read and write (Figure 11). We also lift the preexisting operations
and relations involving effects to such pairs in a straightforward manner, with the intent that the
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Graph IR 𝜆∗G
H, h ::= x ↦→ x Hard Dependencies
S, s ::= x ↦→ x Soft Dependencies
Δ, 𝛿 ::= h; s Dependencies
𝜺 ::= r:𝑞;w:𝑞 Effects

Effects and Dependencies

(r : 𝑞1 ; w : 𝑝1) ▷ (r : 𝑞2;w : 𝑝2) := (r : 𝑞1, 𝑞2 ; w : 𝑝1, 𝑝2) Sequential Composition
(r : 𝑞 ; w : 𝑝) ⊆ 𝑟 := 𝑞, 𝑝 ⊆ 𝑟 Effect/Qualifier Inclusion
Σ | Γ ⊢ (r : 𝑞 ; w : 𝑝)∗ := Σ | Γ ⊢ (r : 𝑞∗ ; w : 𝑝∗) Effect Saturation
∅ := (r : ∅ ; w : ∅) Purity
r(𝑞) := (r : 𝑞 ; w : ∅) Just a Read
w(𝑞) := (r : ∅ ; w : 𝑞) Just a Write
(h1; s1), (h2; s2) := (h1, h2); (s1, s2) Update
(h; s) | (r:𝑞 ;w:𝑝 ) := (h|𝑞 ; h|𝑝 ⊔ s|𝑝 ) Restriction
(h1; s1) [𝑥 { h2; s2] := (h1 [𝑥 { h2]; s1 [𝑥 { s2]) Rewiring
s ⊕𝑥 𝑞 := s, {𝑦 ↦→ s(𝑦), 𝑥 | 𝑦 ∈ 𝑞} Insertion of 𝑥
(h; s) ⊕𝑥 (r : 𝑞 ; w : 𝑝) := (h, (𝑝, 𝑥) ↦→ 𝑥 ; (s, (𝑝, 𝑥) ↦→ ∅) ⊕𝑥 𝑞 Last Use at 𝑥

Dependency Synthesis [Σ | Γ] 𝜑 • Δ ⊢ (𝑛 | 𝑔) : 𝑇 𝑞 𝜺 { (𝒏 | 𝒈) • 𝛿

x : Alloc𝑞 ∈ [Σ | Γ] 𝜑
y : 𝐵 ∅ ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ refx y : (Ref 𝐵) ∅ r(x)
{ refx y • Δ| r(x)∗

({-ref)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ ! x : 𝐵 ∅ r(x)
{ ! x • Δ| r(x)∗

({-!)

x : (Ref 𝐵) 𝑞 ∈ [Σ | Γ] 𝜑
y : 𝐵 ∅ ∈ [Σ | Γ] 𝜑

[Σ | Γ] 𝜑 • Δ ⊢ x B y : Unit∅ w(x)
{ x B y • Δ| w(x)∗

({-:=)

[Σ | Γ] 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑝 𝜺1 { 𝒃 • 𝛿1
[Σ | Γ , 𝑥 : 𝑆 𝑝 ] 𝜑,𝑥 • Δ ⊕𝑥 𝜺1∗ ⊢ 𝑔 : 𝑇 𝑞 𝜺2

{ 𝒈 • 𝛿2
𝜃 = [𝑝/𝑥] 𝑥 ∉ fv (𝑇 )

[Σ | Γ] 𝜑 • Δ ⊢ let 𝑥 = 𝑏 in 𝑔 : (𝑇 𝑞 𝜺1 ▷ 𝜺2)𝜃
{ (let 𝑥 = 𝒃 • 𝛿1 in 𝒈) • 𝛿1, 𝛿2 [𝑥 { Δ|𝑝∗]

({-let)
Effect Subtyping Σ | Γ ⊢ 𝜺1 <: 𝜺2

Σ | Γ ⊢ 𝑞1 <: 𝑞2 Σ | Γ ⊢ 𝑝1 <: 𝑝2
Σ | Γ ⊢ (r : 𝑞1 ; w : 𝑝1) <: (r : 𝑞2;w : 𝑝2)

(e-sub)

Fig. 11. The syntax and typing rules of the graph IR 𝜆∗G with hard and soft dependencies. We only show
the changes relative to Figure 9. All other rules remain exactly the same using overloaded operations on
effects and qualifiers that act component-wise on hard and soft dependencies.

𝜆∗G typing and synthesis rules can be copied over almost one-to-one with overloaded notations for
the new effect structure. The only tweak needed is that typing rules introducing effects should
classify them as read or write effects, and the last-use update at let bindings is a bit more involved.
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6.2 Hard-and-Soft Dependency Calculation
We use the hard dependency in Δ to track the last write of any variable/location in context, whereas
its soft dependency tracks all the reads on a variable since it was last written.

Projections need to merge the hard dependencies of a write effect into its soft dependencies, and
project the hard dependencies for reads, i.e., (h; s) | (r:𝑞 ;w:𝑝 ) := (h|𝑞 ; h|𝑝 ⊔ s|𝑝 ).
Last-use updates at let bindings need to reset the recorded last reads for any written variable,

and add the bound variable to the last reads for any written variable, i.e.,

(h; s) ⊕𝑥 (r : 𝑞 ; w : 𝑝) := (h, (𝑝, 𝑥) ↦→ 𝑥 ; (s, (𝑝, 𝑥) ↦→ ∅) ⊕𝑥 𝑞),

where 𝑥 is the let-bound variable and s ⊕𝑥 𝑞 := s, {𝑦 ↦→ s(𝑦), 𝑥 | 𝑦 ∈ 𝑞} adds 𝑥 into each set pointed
to by 𝑞.

6.3 Statics
Figure 11 shows the required changes to the synthesis rules from Figure 9 (and also indicates the
needed changes for the checking rules from Figure 8). With the overloaded operations on effects
and dependencies, the rules for mutable references need to classify their effects on the operands.
That is, reference allocations cause a read on the used allocation capability and its reachable aliases,
dereferences a read on the target reference and its aliases, and assignments a write, accordingly.

6.4 Metatheory
The theorems and proofs for the graph IR with hard and soft dependency are for the most part
identical to the previous system, and we just repeat the most relevant theorems without proof.

Lemma 6.1 (Synthesis Invariant). Dependencies are completely determined by the context and
effect, as follows:

(1) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑛 : 𝑇 𝑞 𝜺 { 𝒏 • 𝛿, then 𝛿 = Δ|𝜺∗.
(2) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺 { 𝒈 • 𝛿, then 𝛿 = Δ|𝜺∗.

Proof. Analogous to the proof of Lemma 5.1. □

Lemma 6.2 (Soundness of Synthesis). Synthesis produces well-typed annotated programs:

(1) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑛 : 𝑇 𝑞 𝜺 { 𝒏 • 𝛿, then [Σ | Γ] 𝜑 • Δ ⊢ 𝒏 : 𝑇 𝑞 𝜺.
(2) If [Σ | Γ] 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺 { 𝒈 • 𝛿, then [Σ | Γ] 𝜑 • Δ ⊢ 𝒈 : 𝑇 𝑞 𝜺.

Proof. Analogous to the proof of Lemma 5.2. □

Lemma 6.3 (Synthesis is Total).
(1) If [Σ | Γ] 𝜑 ⊢M 𝑛 : 𝑇 𝑞 𝜺 then ∀Δ. ∃𝒏. ∃𝛿. [Σ | Γ] 𝜑 • Δ ⊢ 𝑛 : 𝑇 𝑞 𝜺 { 𝒏 • 𝛿 and 𝒏 erases back

to 𝑛.
(2) If [Σ | Γ] 𝜑 ⊢M 𝑔 : 𝑇 𝑞 𝜺 then ∀Δ. ∃𝒈. ∃𝛿. [Σ | Γ] 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺 { 𝒈 • 𝛿 and 𝒈 erases back

to 𝑔.

Proof. Analogous to the proof of Lemma 5.3. □

Corollary 6.4 (End-to-end Type Preservation). For any well-formed context and compatible
Δ, there is a type/effect/qualifier-preserving translation from the direct-style 𝜆∗𝜀 -calculus into the 𝜆

∗
G

graph IR with hard and soft dependencies.

Proof. By lemmas 4.2, 6.3, and 6.2. □
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Theorem 6.5 (Progress). If [Σ | ∅] dom(Σ) ⊢ 𝑧.𝑔•𝛿 : 𝑇 𝑞 𝜺, then either 𝑔 is a location ℓ ∈ dom(Σ),
or for any store 𝜎 where [Σ | ∅] dom(Σ) ⊢ 𝜎 , there exists a graph term 𝑔′, store 𝜎 ′, and dependency 𝛿 ′

such that 𝜎 | 𝑧.𝑔 • 𝛿 −→G 𝜎
′ | 𝑧.𝑔′ • 𝛿 ′.

Theorem 6.6 (Preservation).
[Σ | ∅] dom(Σ) ⊢ 𝑧.𝑔 • 𝛿 : 𝑇 𝑞 𝜺 Σ | ∅ • ↦→𝑧.𝑧 ok [Σ | ∅] dom(Σ) • ↦→𝑧 ⊢ 𝜎 𝜎 | 𝑧.𝑔 • 𝛿 −→G 𝜎

′ | 𝑧.𝑔′ • 𝛿 ′

∃Σ′ ⊇ Σ. ∃𝑝 ⊆ dom(Σ′ \ Σ). [Σ′ | ∅] dom(Σ′ ) ⊢ 𝑧.𝑔′ • 𝛿 ′ : 𝑇 𝑞,𝑝 𝜺, 𝑝

Σ′ | ∅ • ↦→𝑧.𝑧 ok [Σ′ | ∅] dom(Σ′ ) • ↦→𝑧 ⊢ 𝜎 ′

Corollary 6.7 (Preservation of Separation). Interleaved executions preserve types and dis-
jointness:
[Σ | ∅] dom(Σ) ⊢ 𝑔1 • 𝛿1 : 𝑇 𝑞1

1 𝜺1 𝜎 | 𝑧.𝑔1 • 𝛿1 −→G 𝜎
′ | 𝑧.𝑔′1 • 𝛿1′ [Σ | ∅] dom(Σ) ⊢ 𝜎 Σ | ∅ • ↦→𝑧.𝑧 ok

[Σ | ∅] dom(Σ) ⊢ 𝑔2 • 𝛿2 : 𝑇 𝑞2
2 𝜺2 𝜎 ′ | 𝑧.𝑔2 • 𝛿2 −→G 𝜎

′′ | 𝑧.𝑔′2 • 𝛿2′ 𝑞1 ∩ 𝑞2 ⊆ ∅
∃𝑝1 𝑝2 𝜺′1 𝜺′2 Σ′ Σ′′ . [Σ′ | ∅] dom(Σ

′ ) ⊢ 𝑧.𝑔′1 • 𝛿1′ : 𝑇
𝑝1
1 𝜺′1 Σ′′ ⊇ Σ′ ⊇ Σ

[Σ′′ | ∅] dom(Σ′′ ) ⊢ 𝑧.𝑔′2 • 𝛿2′ : 𝑇
𝑝2
2 𝜺′2 𝑝1 ∩ 𝑝2 ⊆ ∅

Corollary 6.8 (Dependency Safety). Evaluation respects the order of effect dependencies for
well-typed graph IR terms, i.e., an effectful graph node is executed only if all its dependencies are
resolved in the store.

7 CONTEXTUAL EQUIVALENCE - THE DIRECT-STYLE 𝜆∗𝜀 -CALCULUS
We apply a logical relations approach following [Ahmed et al. 2009; Benton et al. 2007; Timany et al.
2022] to support relational reasoning with respect to the observational equivalence of two programs.
We define binary logical relations over reachability types (the 𝜆∗𝜀 -calculus in Sec. 2), and prove
the soundness of the equational rules. Our development is based on a framework for modeling
reachability types with logical relations developed in parallel with this work [Bao et al. 2023]. To
make the present report self-contained, pieces of Bao et al. [2023] are repeated in this section
without further reference. To avoid technical complications, we choose a model that allows mutable
references to contain only first-order values, consistent with the previous sections. The definition
of the logical relation can be extended to support higher-order references using well-established
techniques such as step-indexing [Ahmed et al. 2009; Ahmed 2004; Appel and McAllester 2001],
which we leave as future work.

7.1 High-level Overview of the Proofs
A program 𝑡1 is said to be contextually equivalent to another program 𝑡2, written as Γ 𝜑 |= 𝑡1 ≈ctx
𝑡2 : 𝑇 𝑝 𝜺, if for any program context 𝐶 with a hole of type 𝑇 𝑝 𝜺, if 𝐶 [𝑡1] has some (observable)
behavior, then so does 𝐶 [𝑡2]. The definition of context 𝐶 can be found in Sec. 7.2.

Following the approach of Timany et al. [2022] and related prior works [Ahmed et al. 2009], we
define a judgement for logical equivalence using binary logical relations, written as Γ 𝜑 |= 𝑡1 ≈log
𝑡2 : 𝑇 𝑞 𝜺.

The high-level structure of the proof is the following:
• Soundness (Theorem 7.43, Sec. 7.8). We show that the logical relation is sound with respect
to contextual equivalence:

Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑇 𝑞 𝜺 implies Γ 𝜑 |= 𝑡1 ≈ctx 𝑡2 : 𝑇 𝑞 𝜺 .

• Compatibility lemmas (Sec. 7.7). We show that the logical relation is compatible with
syntactic typing.

These results can be used to prove the soundness of the equational rules (Sec. 7.9).
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Context for Contextual Equivalence

𝐶 ::= □ | 𝐶 𝑡 | 𝑡 𝐶 | 𝜆𝑥.𝐶 | ref𝑡 𝐶 | ref𝐶 𝑡 | ! 𝐶 | 𝐶 := 𝑡 | 𝑡 := 𝐶 | let 𝑥 = 𝐶 in 𝑡 | let 𝑥 = 𝑡 in 𝐶

Context Typing Rules 𝐶 : (Γ 𝜑 ;𝑇 𝑞 𝜺) ⇛ (Γ′𝜑 ;𝑇 𝑞 𝜺)

Γ 𝜑 ⊢ 𝑇 𝑞 𝜺 <: 𝑇 ′ 𝑞
′
𝜺′

□ : (Γ 𝜑 ;𝑇 𝑞 𝜺) ⇛ (Γ′𝜑 ′ ;𝑇 ′ 𝑞
′
𝜺′)

(c-hole)

𝐶 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ (Γ′𝜑
′
; ((𝑥 : 𝑇 𝑝∗∩𝑞∗) →𝜺3 𝑈 ′ 𝑟

′
)𝑞′ 𝜺4) Γ′𝜑

′ ⊢ 𝑡2 : 𝑇 𝑝 𝜺2
𝑥 ∉ fv(𝑈 ′) 𝑟 ′ ⊆ 𝜑 ′, 𝑥 𝜺3 ⊆ 𝜑 ′, 𝑥 𝜃 = [𝑝/𝑥]

𝐶 𝑡2 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ (Γ′𝜑
′
; (𝑈 ′ 𝑟 ′ 𝜺4 ▷ 𝜺2 ▷ 𝜺3)𝜃 )

(c-app-1)

Γ′𝜑
′ ⊢ 𝑡1 : ((𝑥 : 𝑇 𝑝∗∩𝑞∗) →𝜺4 𝑈 ′ 𝑟

′
)𝑞′ 𝜺2 𝐶 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ (Γ′𝜑

′
;𝑇 𝑝 𝜺3)

𝑥 ∉ fv(𝑈 ′) 𝑟 ′ ⊆ 𝜑 ′, 𝑥 𝜺3 ⊆ 𝜑 ′, 𝑥 𝜃 = [𝑝/𝑥]
𝑡1 𝐶 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ (Γ′𝜑

′
; (𝑈 ′ 𝑟 ′ 𝜺2 ▷ 𝜺3 ▷ 𝜺4)𝜃 )

(c-app-2)

𝐶 : (Γ 𝜑 ; 𝑆 𝑟 𝜺) ⇛ ((Γ′ , 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ;𝑈 𝑟 𝜺′) 𝑞 ⊆ 𝜑

𝜆𝑥.𝐶 : (Γ 𝜑 ; 𝑆 𝑟 𝜺) ⇛ (Γ′𝜑 ′ ; ((𝑥 : 𝑇 𝑝 ) →𝜺′ 𝑈 𝑟 )𝑞 ∅)
(c-𝜆)

Γ′𝜑
′ ⊢ 𝑡 : Alloc𝑞 𝜺1 𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺2) ⇛ (Γ′𝜑

′
;𝐵 ∅ 𝜺′)

ref𝑡 𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺2) ⇛ (Γ′𝜑
′
;Ref 𝐵 ∅ 𝜺1 ▷ 𝜺′ ▷ 𝑞)

(c-ref-1)

Γ′𝜑
′ ⊢ 𝑡 : 𝐵 ∅ 𝜺2 𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺1) ⇛ (Γ′𝜑

′
;Alloc𝑞 𝜺′1)

ref𝐶 𝑡 : (Γ 𝜑 ;𝑇 𝑟 𝜺1) ⇛ (Γ′𝜑
′
;Ref 𝐵 ∅ 𝜺′1 ▷ 𝜺2 ▷ 𝑞)

(c-ref-2)

𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺) ⇛ (Γ′𝜑 ′ ; (Ref 𝐵) 𝑞′ 𝜺′)
⊢ ! 𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺) ⇛ (Γ′𝜑 ′ ;𝐵 ∅ 𝜺′)

(c-!)

𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺) ⇛ (Γ′𝜑 ′ ; (Ref 𝐵) 𝑞′ 𝜺′) Γ′𝜑
′ ⊢ 𝑡2 : 𝐵 ∅ 𝜺′

𝐶 := 𝑡2 : (Γ 𝜑 ;𝑇 𝑟 𝜺) ⇛ (Γ′𝜑 ′ ;Unit∅ 𝜺′)
(c-:=-1)

Γ′𝜑
′ ⊢ 𝑡1 : (Ref 𝐵) 𝑞

′
𝜺′ 𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺) ⇛ (Γ′𝜑 ′ ;𝐵 ∅ 𝜺′)

𝑡1 := 𝐶 : (Γ 𝜑 ;𝑇 𝑟 𝜺) ⇛ (Γ′𝜑 ′ ;Unit∅ 𝜺′)
(c-:=-2)

𝐶 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ ((Γ′, 𝑥 : 𝑇 𝑝∗∩𝜑 ′∗)𝜑 ′,𝑥 ;𝑈 ′ 𝑟
′
𝜺2) Γ′𝜑

′ ⊢ 𝑡 : 𝑇 𝑝 𝜺3
𝑥 ∉ fv(𝑈 ′) 𝜃 = [𝑝/𝑥]

let 𝑥 = 𝑡 in 𝐶 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ (Γ′𝜑
′
; (𝑈 ′ 𝑟 ′ 𝜺2 ▷ 𝜺3)𝜃 )

(c-let-1)

(Γ′, (𝑥 : 𝑇 𝑝∗∩𝜑 ′∗))𝜑 ′,𝑥 ⊢ 𝑡 : 𝑈 ′ 𝑟
′
𝜺2 𝐶 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ (Γ′𝜑

′
;𝑇 𝑝 𝜺3)

𝑥 ∉ fv(𝑈 ′) 𝜃 = [𝑝/𝑥]
let 𝑥 = 𝐶 in 𝑡 : (Γ 𝜑 ;𝑈 𝑟 𝜺1) ⇛ (Γ′𝜑

′
; (𝑈 ′ 𝑟 ′ 𝜺2 ▷ 𝜺3)𝜃 )

(c-let-2)

Fig. 12. Context typing rules for the 𝜆∗𝜀 -Calculus.

7.2 Contextual Equivalence
Unlike reduction contexts 𝐸 in Fig. 4, contexts 𝐶 for reasoning about the equivalence allow a “hole”
to appear in any place. We write 𝐶 : (Γ 𝜑 ;𝑇 𝑞 𝜺) ⇛ (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) to mean that the context 𝐶 is a
program of type 𝑇 ′𝑞′ 𝜺′ (closed under Γ′𝜑 ′ ) with a hole that can be filled with any program of type
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𝑇 𝑞 𝜺 (closed under Γ 𝜑 ). The typing rules for well-typed contexts imply that if Γ 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺 and
𝐶 : (Γ 𝜑 ;𝑇 𝑞 𝜺) ⇛ (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) hold, then Γ′𝜑

′ ⊢ 𝐶 [𝑡] : 𝑇 ′𝑞′ 𝜺′. Fig. 12 shows the typing rules for
well-typed contexts.

Two well-typed terms, 𝑡1 and 𝑡2, under type context Γ 𝜑 , are contextually equivalent if any
occurrences of the first term in a closed term can be replaced by the second term without affecting
the observable results of reducing the program, which is formally defined as follows:

Definition 7.1 (Contextual Equivalence). We say 𝑡1 is contextually equivalent to 𝑡2, written as
Γ 𝜑 |= 𝑡1 ≈ctx 𝑡2 : 𝑇 𝑝 𝜺, if Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞 𝜺, and Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑞 𝜺, and:

∀𝐶 : (Γ 𝜑 ;𝑇 𝑞 𝜺) ⇛ (∅;Unit∅ ∅). 𝐶 [𝑡1] ↓ ⇐⇒ 𝐶 [ 𝑡2 ] ↓ .

We write 𝑡 ↓ to mean term 𝑡 terminates, if ∅ | 𝑡 −→∗v 𝜎 | 𝑣 for some value 𝑣 and final store 𝜎 .
The above definition is standard [Ahmed et al. 2009] and defines a partial program equivalence.

However, since we focus on a total fragment of the 𝜆∗𝜀 -calculus here, program termination can not
be used as an observer for program equivalence. We will thus rely on the following refined version
of contextual equivalence using Boolean contexts:

∀𝐶 : (Γ 𝜑 ;𝑇 𝑞 𝜺) ⇛ (∅;Bool∅ ∅). ∃ 𝜎, 𝜎 ′, 𝑣 .
∅ | 𝐶 [𝑡1] −→∗v 𝜎 | 𝑣 ∧ ∅ | 𝐶 [𝑡2] −→∗v 𝜎 ′ | 𝑣 .

That is to say, we consider two terms contextually equivalent if they yield the same answer value
in all Boolean contexts.

7.3 The Model
Following other prior works [Ahmed 2004; Benton et al. 2007; Thamsborg and Birkedal 2011], we
apply Kripke logical relations to the 𝜆∗𝜀 -calculus. Our logical relations are indexed by types and
store layouts via worlds. This allows us to interpret Ref B as an allocated location that holds values
of type B. The invariant that all allocated locations hold well-typed values with respect to the world
must hold in the pre-state and be re-established in the post-state of a computation. The world may
grow as more locations may be allocated. It is important that this invariant must hold in future
worlds, which is commonly referred as monotonicity.

Considering the restriction to first-order references here, our store layouts are always “flat”, i.e.,
free of cycles. The notion of world for the 𝜆∗𝜀 -calculus is defined in the following:

Definition 7.2 (World). A world W is a triple (𝐿1, 𝐿2, 𝑓 ), where
• 𝐿1 and 𝐿2 are finite sets of locations.
• 𝑓 ⊆ (𝐿1 × 𝐿2) is a partial bijection.

A world is meant to define relational stores. The partial bijection captures the fact that a relation
holds under permutation of locations.

If W = (𝐿1, 𝐿2, 𝑓 ) is a world, we refer to its components as follows:

W(ℓ1, ℓ2) =

{
(ℓ1, ℓ2) ∈ 𝑓 when defined
∅ otherwise

dom1 (W) = 𝐿1
dom2 (W) = 𝐿2

If W and W′ are worlds, such that dom1 (W) ∩ dom1 (W′) = dom2 (W) ∩ dom2 (W′) = ∅, then W
and W′ are called disjoint, and we write W;W′ to mean extending W with a disjoint world W′. Let
𝜎1 and 𝜎2 be two stores. We write (𝜎1, 𝜎2) : W to mean W = (dom(𝜎1), dom(𝜎2), 𝑓 ).
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Interpretation of Value Reachability

locs(𝜔) = ∅ locs(unit) = ∅ locs(𝑐) = ∅ locs(ℓ) = { ℓ }
locs(𝜆𝑥 .𝑡) = {ℓ | ℓ ∈ fv(𝑡) ∧ ℓ ∈ Loc}

Interpretation of ReachabilityQualifiers

locs(𝑞) def
= { ℓ | ℓ ∈ 𝑞 ∧ ℓ ∈ Loc}

Reachability Predicates

𝑣 {𝜎 𝐿
def
= (dom(𝜎) ∩ locs(𝑣)) ⊆ 𝐿

Fig. 13. Interpretation of reachability qualifiers.

Our world definition allows us to specify that the domains of two relational stores may grow
during a computation, but does not cover store operations, which is important when proving
the soundness of equational rules. Like prior works (e.g., [Benton et al. 2007; Thamsborg and
Birkedal 2011]), we use effects as a refinement for the definition of world. The notation 𝜺 denotes
read/write effects, and 𝜔 means allocation occurs during a computation. Local reasoning is enabled
by reachability qualifiers and read/write effects, meaning that what is preserved during an effectful
computation are the locations that are not mentioned in the read/write effects. This is a common
technique used in reasoning about frames inHoare-style logics, e.g., separation logic [Reynolds 2002].
This treatment is also applicable to our refined effect system (Sec. 6), where framing is achieved
through write effects – an established technique in Dafny [Leino 2010] and region logics [Banerjee
et al. 2013; Bao et al. 2015]. In this case, a frame indirectly describes the locations that a computation
may not change [Borgida et al. 1995]. Framing allows the proof to carry properties of effectful
terms, such as function applications, since properties that are true for unchanged locations will
remain valid [Bao et al. 2018].

7.4 Interpretation of Reachability
In the 𝜆∗𝜀 -calculus, reachability qualifiers are used to specify desired separation or permissible
overlapping of reachable locations from a function’s argument and its body. Fig. 13 shows the
interpretation of reachability qualifiers. As in the 𝜆∗𝜀 calculus, values cannot be cyclic, we axiomatize
the definition of reachability, without proving termination. Here, we assume free variables are
already substituted with values.
We use locs(𝑣) to define the set of locations that are reachable from a given value 𝑣 . Base type

values, i.e., 𝜔 of type Alloc, unit of type Unit, and other constants 𝑐 of other base types B, do not
reach any store locations. Thus, they reach the empty set of locations. A location ℓ can only reach
itself. Thus, its reachable set is the singleton set {ℓ}. The set of locations that are reachable from a
function value 𝜆𝑥 .𝑡 are the set of the locations appearing in the function body.
We overload the function locs, and write locs(𝑞) to mean the set of locations reachable from

qualifier 𝑞, which are the set of the locations appeared in 𝑞. A bound variable may appear in 𝑞,
and serves as a placeholder to specify the set of locations that a function’s return value may reach.
See Sec. 7.5 for details. The notation 𝑣 {𝜎 𝐿 is a predicate that asserts the set of locations that are
reachable from 𝑣 in store 𝜎 is a subset of 𝐿, where 𝐿 is a set of locations.

7.5 Binary Logical Relations for 𝜆∗𝜀
This section presents the definition of binary logical relations for 𝜆∗𝜀 . Following the approach of
Timany et al. [2022], we define the binary logical relation for logical equivalence in two steps:
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Value Interpretation of Types and Terms 𝜆∗𝜀

V[[Alloc]]𝛾 { (W, 𝜔,𝜔 ) }
V[[Unit]]𝛾 = { (W, unit, unit) }
V[[Bool]]𝛾 = { (W, 𝑣, 𝑣) | 𝑣 = true ∨ 𝑣 = false}
V[[Ref B]]𝛾 = { (W, ℓ1, ℓ2 ) | ∀ 𝜎1, 𝜎2 . (𝜎1, 𝜎2 ) : W ∧ ℓ1 ∈ dom(𝜎1 ) ∧ ℓ2 ∈ dom(𝜎2 ) ∧ W(ℓ1, ℓ2 ) ∧

(W, 𝜎1 (ℓ1 ), 𝜎2 (ℓ2 ) ) ∈ V[[B]]𝛾 }

V[[ (𝑥 : 𝑇 𝑝 ) →𝜺 𝑈 𝑟 ]]𝛾 = { (W, 𝜆𝑥 .𝑡1, 𝜆𝑥 .𝑡2 ) | locs(𝜆𝑥.𝑡1 ) ⊆ dom1 (W) ∧ locs(𝜆𝑥.𝑡2 ) ⊆ dom2 (W) ∧
(∀𝑣1, 𝑣2,W′, 𝜎1, 𝜎2 .(𝜎1, 𝜎2 ) : W;W′ ⇒ (W;W′, 𝑣1, 𝑣2 ) ∈ V[[𝑇 ]]𝛾 ⇒

locs(𝜆𝑥.𝑡1 ) ∩ locs(𝑣1 ) ⊆ locs(𝛾1 (𝑝 ) ) ⇒ locs(𝜆𝑥.𝑡2 ) ∩ locs(𝑣2 ) ⊆ locs(𝛾2 (𝑝 ) ) ⇒
∃W′′, 𝜎 ′1, 𝜎 ′2, 𝑣′1, 𝑣′2 . 𝜎1 | 𝑡1 [𝑥 ↦→ 𝑣1 ] −→∗v 𝜎 ′1 | 𝑣′1 ∧ 𝜎2 | 𝑡2 [𝑥 ↦→ 𝑣2 ] −→∗v 𝜎 ′2 | 𝑣′2 ∧
(𝜎 ′1, 𝜎 ′2 ) : W;W′;W′′ ∧ (W;W′;W′′, 𝑣′1, 𝑣

′
2 ) ∈ V[[𝑈 ]]𝛾 ∧

(𝑥 ∈ 𝑟 ⇒ 𝑣′1 {
𝜎1 (locs(𝛾1 (𝑟 ) ) ∩ locs(𝜆𝑥.𝑡1 ) ∪ locs(𝑣1 ) ) ∧

𝑣′2 {
𝜎2 (locs(𝛾2 (𝑟 ) ) ∩ locs(𝜆𝑥.𝑡2 ) ∪ locs(𝑣2 ) ) ) ∧

(𝑥 ∉ 𝑟 ⇒ 𝑣′1 {
𝜎1 (locs(𝛾1 (𝑟 ) ) ∩ locs(𝜆𝑥.𝑡1 ) ) ∧

𝑣′2 {
𝜎2 (locs(𝛾2 (𝑟 ) ) ∩ locs(𝜆𝑥.𝑡2 ) ) ) ∧

(𝑥 ∈ 𝜺 ⇒ 𝜎1 ↩→locs(𝛾1 (𝜺▷𝑝 ) ) 𝜎 ′1 ∧ 𝜎2 ↩→locs(𝛾2 (𝜺▷𝑝 ) ) 𝜎 ′2 ) ∧
(𝑥 ∉ 𝜺 ⇒ 𝜎1 ↩→locs(𝛾1 (𝜺 ) ) 𝜎 ′1 ∧ 𝜎2 ↩→locs(𝛾2 (𝜺 ) ) 𝜎 ′2 ) ) }

𝜎 ↩→𝜺 𝜎 ′
def
= ∀𝑙 ∈ dom(𝜎 ) .𝜎 (𝑙 ) = 𝜎 ′ (𝑙 ) ∨ 𝑙 ∈ 𝜺

E[[𝑇 𝑞 𝜺 ]]𝛾𝜑 = { (W, 𝑡1, 𝑡2 ) | ∀ 𝜎1, 𝜎2 .(𝜎1, 𝜎2 ) : W ∧ ∃W′, 𝜎 ′1, 𝜎 ′2, 𝑣1, 𝑣2 . 𝑡1 | 𝜎1 −→∗v 𝑣1 | 𝜎 ′1 ∧
𝑡2 | 𝜎2 −→∗v 𝑣2 | 𝜎 ′2 ∧ (𝜎 ′1, 𝜎 ′2 ) : W;W′ ∧ (W;W′, 𝑣1, 𝑣2 ) ∈ V[[𝑇 ]]𝛾 ∧
𝑣1 {

𝜎1 (locs(𝛾1 (𝜑 ∩ 𝑞) ) ) ∧ 𝑣2 {
𝜎2 (locs(𝛾2 (𝜑 ∩ 𝑞) ) ) ∧

𝜎1 ↩→locs(𝛾1 (𝜺 ) ) 𝜎 ′1 ∧ 𝜎2 ↩→locs(𝛾2 (𝜺 ) ) 𝜎 ′2}

Fig. 14. Binary value and term interpretation for the 𝜆∗𝜀 -calculus.

(1) We define binary interpretations on pairs of closed values, and pairs of closed terms.
(2) We define the logical equivalence relation on open terms, Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑇 𝑞 𝜺, by lifting

the value and term relations to open terms using a closing substitution.
The 𝜆∗𝜀 -calculus has a dependent type system, where types may mention term variables. We

could either define logical relations indexed by two types with variants on qualifiers (i.e., the choice
of locations after closing substitution); or indexed by a type where performing closing substitution
to qualifiers in the definition. Here, we choose the latter. Thus, a relational value substitution is a
parameter of the definition of logical relations.

The relational value substitution has to satisfy the context interpretation. We define the interpre-
tation of typing contexts:

𝐺 [[∅𝜑 ]] = ∅
𝐺 [[ (Γ, 𝑥 : 𝑇 𝑞 )𝜑 ]] = { (W, 𝛾 ; (𝑥 ↦→ (𝑣1, 𝑣2 ) ) ) | (W, 𝛾 ) ∈ 𝐺 [[Γ𝜑 ]] ∧ 𝜑 ⊆ dom(Γ) ∧ 𝑞 ⊆ dom(Γ) ∧

(W, 𝑣1, 𝑣2 ) ∈ V[[𝑇 ]]𝛾 ∧
(∀𝑞,𝑞′ . 𝑞 ⊆ 𝜑 ∧ 𝑞′ ⊆ 𝜑 ∧ ⇒

(locs(𝛾1 (𝑞∗) ) ∩ locs(𝛾1 (𝑞′∗) ) ⊆ locs(𝛾1 (𝑞∗∩𝑞′∗) ) ∧
locs(𝛾2 (𝑞∗) ) ∩ locs(𝛾2 (𝑞′∗) ) ⊆ locs(𝛾2 (𝑞∗∩𝑞′∗) ) ) ) }

In the above definition, 𝛾 ranges over relational value substitutions that are finite maps from
variables 𝑥 to pairs of values (𝑣1, 𝑣2). If 𝛾 (𝑥) = (𝑣1, 𝑣2), then 𝛾1 (𝑥) denotes 𝑣1 and 𝛾2 (𝑥) denotes 𝑣2.
We write 𝛾1 (𝑞) and 𝛾2 (𝑞) to mean substituting the free variables in 𝑞 with respect to the relational
value substitution 𝛾 .

The Binary Value Interpretation. The definition of binary value interpretation of types is shown
in Fig. 14. The relational interpretation of type 𝑇 , written as V[[𝑇 ]]𝛾 , is a set of tuples of form
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(W, 𝑣1, 𝑣2), where 𝑣1 and 𝑣2 are values, and W is a world. We say 𝑣1 and 𝑣2 are related at type 𝑇
with respect to W.

Ground Types. We restrict the base types 𝐵 to Alloc, Unit and Bool to streamline the presentation.
A pair of allocation capabilities (𝜔,𝜔) are related at type Alloc. A pair of unit values (unit, unit)
are related at type Unit. A pair of boolean values are related if they are both true or false. A pair
of locations (ℓ1, ℓ2) are related if they are in the domain of the relational store with respect to W,
((𝜎1, 𝜎2) : W), such that W(ℓ1, ℓ2). It means that a pair of related locations store related values.

Function Types. Two 𝜆 terms, 𝜆𝑥.𝑡1 and 𝜆𝑥 .𝑡2, are related at type𝑇 𝑝 →𝜺 𝑈 𝑟 with respect to world
W, meaning that it satisfies the following conditions:

• The set of locations reachable from the two 𝜆 terms are well-formed with respect to the
world, i.e., locs(𝜆𝑥 .𝑡1) ⊆ dom1 (W) and locs(𝜆𝑥.𝑡2) ⊆ dom2 (W).
• The arguments are allowed if

– the arguments 𝑣1 and 𝑣2 are related at type 𝑇 with respect W;W′, for all W′; and
– the overlapping locations reachable from the functions and their arguments are per-

missible by the argument’s qualifier 𝑝 , i.e., locs(𝜆𝑥.𝑡1) ∩ locs(𝑣1) ⊆ locs(𝛾1 (𝑝)) and
locs(𝜆𝑥.𝑡2) ∩ locs(𝑣2) ⊆ locs(𝛾2 (𝑝)).

• After substitution, the two terms 𝑡1 [𝑥 ↦→ 𝑣1] and 𝑡2 [𝑥 ↦→ 𝑣2] are reduced to some values 𝑣 ′1
and 𝑣 ′2 with some final stores 𝜎 ′1 and 𝜎

′
2.

• 𝜎 ′1 and𝜎
′
2 are relatedwith respect toworldW;W′;W′′, for someW′′, i.e., (𝜎 ′1, 𝜎 ′2) : W;W′;W′′.

• 𝑣 ′1 and 𝑣
′
2 are related at type𝑈 with respect to world W;W′;W′′.

• If the return value’s qualifier 𝑟 depends on the argument (i.e., 𝑥 ∈ 𝑟 ), then the locations
reachable from 𝑣 ′1 and 𝑣

′
2 are subsets of those reachable both from the function and 𝑟 , plus

those reachable from the arguments; otherwise (i.e., 𝑥 ∉ 𝑟 ), they are just subset of those
reachable both from the function and 𝑟 .
• If a bound variable 𝑥 appears in the effect 𝜺, meaning the function body may modify the
argument, then the effect will include the qualifier that may reach the value of function
argument 𝑝; otherwise it is just 𝜺.

The Binary Term Interpretation. Two related terms, 𝑡1 and 𝑡2, are defined based on the relation
of their computational behaviors, i.e., returned values, reachability qualifiers and effects, which is
defined by E[[𝑇 𝜺]]𝛾𝜑 . It means for all related stores with respect to world, (𝜎1, 𝜎2) : W, if

• 𝑡1 is evaluated to some value 𝑣1 with some final store 𝜎 ′1;
• 𝑡2 is evaluated to some value 𝑣2 with some final store 𝜎 ′2;
• 𝑣1 and 𝑣2 are related at type 𝑇 with respect to world W;W′ for some W′;
• 𝜎 ′1 and 𝜎

′
2 are related with respect to W;W′.

• The locations reachable from the values in the domain of pre-stores are subset of those
reachable from 𝛾1 (𝜑 ∩ 𝑞) and 𝛾2 (𝜑 ∩ 𝑞) for each of the term.
• The effect captures what may be modified in the pre-state store.

Note that we interpret the function body (after substitution) and other terms separately, which
allows us to provide more precise reasoning in the logical relations of function types.
Now, we define the binary logical relation for logical equivalence Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑇 𝑞 𝜺 as

follows:

Definition 7.3.

Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑇 𝑞 𝜺
def
= ∀(𝛾,W) ∈ 𝐺 [[Γ 𝜑 ]] .(W, 𝛾1 (𝑡1), 𝛾2 (𝑡2)) ∈ E[[𝑇 𝑞 𝜺]]𝛾𝜑
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where 𝛾1 (𝑡) and 𝛾2 (𝑡) means substitutions of the free variable in 𝑡1 and 𝑡2 with respect to the
relational value substitution 𝛾 . Closing substitution over qualifiers and effects is performed in the
definition of logical relations (Fig. 14).

7.6 Metatheory
This section discusses several key lemmas used in the proof of compatibility lemmas (Sec. 7.7) and
soundness of equational rules (Sec. 7.9).

7.6.1 World Extension and Relational Stores.

Lemma 7.4 (Relational Store Update). If (𝜎1, 𝜎2) : W, and (W, ℓ1, ℓ2) ∈ V[[Ref B]]𝛾 , and
(W, 𝑣1, 𝑣2) ∈ V[[B]]𝛾 , then (𝜎1 [ℓ1 ↦→ 𝑣1], 𝜎2 [ℓ2 ↦→ 𝑣2]) : W.

Proof. By definition of relational stores. □

Lemma 7.5 (Relational Store Extension). If (𝜎1, 𝜎2) : W, and (W, 𝑣1, 𝑣2) ∈ V[[B]]𝛾 , then
(𝜎1; (ℓ1 : 𝑣1), 𝜎2; ℓ2 : 𝑣2) : W; (ℓ1, ℓ2, (ℓ1, ℓ2) ∈ 𝑓 ), where ℓ1 ∉ dom(𝜎1) and ℓ2 ∉ dom(𝜎2).

Proof. By definition of relational stores. □

Lemma 7.6 (Logical Relation Closed Under Relational Value Substitution Extension).
If 𝑇 is closed under Γ 𝜑 , and (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]], then (W, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾 if and only if (W, 𝑣1, 𝑣2) ∈
V[[𝑇 ]]𝛾 ;𝛾 ′ , for all 𝛾 ′.

Proof. By induction on type 𝑇 and the constructs of values 𝑣1 and 𝑣2. □

Lemma 7.7 (Logical Relation Closed Under World Extension). If (W, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾 ,
then for all W′, (W;W′, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾 .

Proof. By induction on type 𝑇 and the constructs of values 𝑣1 and 𝑣2. □

7.6.2 Well-formedness.

Lemma 7.8 (Well-formed value interpretation). Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]]. If (W, 𝑣1, 𝑣2) ∈
V[[𝑇 ]]𝛾 , then locs(𝑣1) ⊆ dom1 (W) and locs(𝑣2) ⊆ dom2 (W).

Proof. By induction on type 𝑇 and the constructs of value 𝑣1 and 𝑣2. □

Lemma 7.9 (Well-formed Typing context interpretation). Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]], then for all
𝑞 ⊆ 𝜑 , locs(𝛾1 (𝑞)) ⊆ dom1 (W) and locs(𝛾2 (𝑞)) ⊆ dom2 (W).

Proof. By definition of the typing context interpretation and Lemma 7.8. □

Lemma 7.10. Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]], then dom(𝛾1) = dom(𝛾2) = dom(Γ), and dom(Γ)∗.

Proof. Immediately by the definition of typing context interpretation and the definition of
saturation in Fig. 3. □

7.6.3 Semantic Typing Context.

Lemma 7.11 (Semantic Typing Context Tighten). If (W, 𝛾, ) ∈ 𝐺 [[Γ 𝜑 ]], then for all 𝑝 ⊆ 𝜑 ,
(W, 𝛾) ∈ 𝐺 [[Γ 𝑝 ]].

Proof. By the definition of typing context interpretation. □

Lemma 7.12 (Semantic Typing Context Extension 1). If (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]], and 𝑞 ⊆ dom(Γ),
and (W, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾 , and locs(𝛾1 (𝜑)) ∩ locs(𝑣1) ⊆ locs(𝛾1 (𝑞)), and locs(𝛾2 (𝜑)) ∩ locs(𝑣2) ⊆
locs(𝛾2 (𝑞)), then (W, 𝛾 ; (𝑥 ↦→ (𝑣1, 𝑣2))) ∈ 𝐺 [[(Γ, 𝑥 : 𝑇 𝑞)𝜑,𝑥 ]]
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Proof. By typing context interpretation and Lemma 7.6. □

Lemma 7.13 (Semantic TypingContext Extension 2). If (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]], and (W;W′, 𝑣1, 𝑣2) ∈
V[[𝑇 ]]𝛾 , and locs(𝛾1 (𝑞))∩locs(𝑣1) ⊆ locs(𝛾1 (𝑝)), and locs(𝛾2 (𝑞))∩locs(𝑣2) ⊆ locs(𝛾2 (𝑝)), and𝑞 ⊆ 𝜑 ,
then (W;W′, 𝛾 ; (𝑥 ↦→ (𝑣1, 𝑣2))) ∈ 𝐺 [[(Γ, 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ]].

Proof. By typing context interpretation, Lemma 7.6, Lemma 7.7 and Lemma 7.11. □

7.6.4 Reachability Qualifiers.

Lemma 7.14. For all 𝜎 , 𝑝 and 𝑞, 𝜔 {𝜎 locs(𝑝 ∩ 𝑞).

Proof. Immediate by the definition in Fig. 13. □

Lemma 7.15. For all 𝜎 , 𝑝 and 𝑞, unit {𝜎 locs(𝑝 ∩ 𝑞).

Proof. Immediate by the definition in Fig. 13. □

Lemma 7.16. For all 𝜎 , 𝑏, 𝑝 and 𝑞, 𝑏 {𝜎 locs(𝑝 ∩ 𝑞), where 𝑏 is true or false.

Proof. Immediate by the definition in Fig. 13. □

Lemma 7.17. For all 𝜎 , ℓ , 𝑝 and 𝑞, ℓ {𝜎 locs(𝑝 ∩ 𝑞), where ℓ ∉ dom(𝜎).

Proof. Immediate by the definition in Fig. 13. □

Lemma 7.18. If (Γ, 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ⊢ 𝑡 : 𝑈 𝑟 , then for all (W, 𝛾) ∈ 𝐺 [[(Γ, 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ]],𝛾1 (𝜆𝑥.𝑡) {dom1 (W)

locs(𝛾1 (𝑞)) and 𝛾2 (𝜆𝑥 .𝑡) {dom2 (W) locs(𝛾2 (𝑞)).

Proof. By the syntactic structure that ensures 𝑞 contains all the free variables in 𝑡 , it is obvious
that after substituting free variables with values, the conclusions hold. □

7.6.5 Effects. Here we introduce several notations to streamline the presentation.
Let 𝜎 be a store. We write 𝜎 = 𝜎1 ∗ 𝜎2 (for some 𝜎1 and 𝜎2) to denote that store 𝜎 can be split into

two disjoint parts 𝜎1 and 𝜎2.
Let 𝜎 be a store and 𝐿 be a set of locations. We write (𝜎↓𝐿) to mean localizing a partial store

with respect to 𝐿, meaning dom((𝜎↓𝐿)) = dom(𝜎) ∩ 𝐿 ∧ ∀ ℓ ∈ dom((𝜎↓𝐿)) .(𝜎↓𝐿) (ℓ) = 𝜎 (ℓ).

Lemma 7.19 (Read/Write Effects). If ℓ ∈ dom(𝜎), and ℓ {𝜎 locs(𝑝 ∩ 𝑞), then 𝜎 ↩→locs(𝑞)

𝜎 [ℓ ↦→ 𝑣].

Proof. By Lemma 7.17 and interpretation of effects. □

Lemma 7.20 (No Effects). 𝜎 ↩→∅ 𝜎 .

Proof. Immediate by the definition of effects. □

Lemma 7.21 (SubEffects). If locs(𝜺1) ⊆ locs(𝜺2), and 𝜎 ↩→locs(𝜺1 ) 𝜎 ′, then 𝜎 ↩→locs(𝜺2 ) 𝜎 ′.

Proof. By the interpretation of effects. □

Lemma 7.22 (Effects Composition). If 𝜎 ↩→locs(𝜺1∗) 𝜎 ′, and 𝜎 ′ ↩→locs( (𝜺2▷𝜺3 )∗) 𝜎 ′′, and 𝜺2∗∩𝜺3∗ =
∅, and locs(𝜺2∗) ⊆ dom(𝜎), and locs(𝜺3∗) ∩ dom(𝜎) = ∅. then 𝜎 ↩→locs( (𝜺1▷𝜺2 )∗) 𝜎 ′′

Proof. By the interpretation of effects. □

Lemma 7.23 (Framing). If𝜎 ↩→locs(𝜺 ) 𝜎 ′, then𝜎 ↓ (dom(𝜎) − locs(𝜺∗)) = 𝜎 ′↓ (dom(𝜎) − locs(𝜺∗))
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Proof. By the interpretation of observable effects: the set of locations that may be written in
the reduction of 𝑡 must be in 𝜺. Thus, the values stored in the locations 𝜎 , but are separate from 𝜺∗
must be preserved. □

Lemma 7.24 (Effect Separation). If 𝜎 | 𝑡1 −→∗v 𝜎 ′ | 𝑣1, and 𝜎 | 𝑡2 −→∗v 𝜎 ′′ | 𝑣2, and
𝜎 ↩→locs(𝜺1 ) 𝜎 ′, and 𝜎 ↩→locs(𝜺2 ) 𝜎 ′′, and 𝜺1∗ ∩ 𝜺2∗ = ∅, then 𝜎 ′↓ (dom(𝜎) − locs(𝜺1∗) − locs(𝜺2∗)) =
𝜎 ′′↓ (dom(𝜎) − locs(𝜺1∗) − locs(𝜺2∗)).

Proof. Let𝜎1 = 𝜎 ↓ locs(𝜺1∗), and𝜎2 = 𝜎 ↓ locs(𝜺2∗), and𝜎3 = 𝜎 ↓ (dom(𝜎) − locs(𝜺1∗) − locs(𝜺2∗)),
We know that 𝜎 = 𝜎1 ∗ 𝜎2 ∗ 𝜎3, as 𝜺1∗ ∩ 𝜺2∗ = ∅.

By 𝜎 ↩→𝜺1 𝜎 ′ and Lemma 7.23, we know 𝜎 ′ = 𝜎 ′1 ∗ 𝜎2 ∗ 𝜎3 ∗ 𝜎𝑓 𝑟1, for some 𝜎 ′1, where 𝜎𝑓 𝑟1 ∗ 𝜎 .
By 𝜎 ↩→𝜺2 𝜎 ′′ and Lemma 7.23, we know 𝜎 ′′ = 𝜎1 ∗ 𝜎 ′2 ∗ 𝜎3 ∗ 𝜎𝑓 𝑟2, for some 𝜎 ′2, where 𝜎𝑓 𝑟2 ∗ 𝜎 .
Then 𝜎 ′ ↓ (dom(𝜎) − locs(𝜺1∗) − locs(𝜺2∗)) = 𝜎3, and 𝜎 ′′ ↓ (dom(𝜎) − locs(𝜺1∗) − locs(𝜺2∗)) =

𝜎3. □

7.6.6 Other auxiliary lemmas.

Lemma 7.25 (Qualifier intersection distributes over locations). Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]], and
(𝜎1, 𝜎2) : W. For all 𝜎 ′1, 𝜎

′
2 and W′, such that (𝜎 ′1, 𝜎 ′2) : W;W′ if 𝑣 𝑓 1 {𝜎1 locs(𝛾1 (𝑞𝑓 )), and 𝑣 𝑓 2 {𝜎2

locs(𝛾2 (𝑞𝑓 )), and 𝑣1 {
𝜎 ′1 locs(𝛾1 (𝑝)), and 𝑣2 {

𝜎 ′2 locs(𝛾2 (𝑝)), and locs(𝑣 𝑓 1) ⊆ dom(𝜎 ′1), and
locs(𝑣 𝑓 2) ⊆ dom(𝜎 ′2), then (locs(𝑣 𝑓 1) ∩ locs(𝑣1)) ⊆ locs(𝛾1 (𝑝∗ ∩ 𝑞𝑓 ∗)) and (locs(𝑣 𝑓 2) ∩ locs(𝑣2)) ⊆
locs(𝛾2 (𝑝∗ ∩ 𝑞𝑓 ∗)).

Proof. By typing context interpretation, Lemma 7.9 and set theory. □

Lemma 7.26 (Semantic Function Abstraction). Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]], (𝜎1, 𝜎2) : W, and
dom(Γ)∗. For all W′, if (W;W′, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾 , and locs(𝛾1 (𝜆𝑥 .𝑡1)) ∩ locs(𝑣1) ⊆ locs(𝛾1 (𝑝)), and
locs(𝛾2 (𝜆𝑥 .𝑡2)) ∩ locs(𝑣2) ⊆ locs(𝛾2 (𝑝)), and (W;W′, 𝛾 ;𝑥 ↦→ (𝑣1, 𝑣2)) ∈ 𝐺 [[(Γ, 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ]] implies
that there exists W′′, such that
(W;W′;W′′, 𝛾1 (𝑡1) [𝑥 ↦→ 𝑣1], 𝛾2 (𝑡2) [𝑥 ↦→ 𝑣2]) ∈ E[[𝑈 𝑟 𝜺]]𝛾𝑞,𝑥 . and 𝑝 ⊆ 𝑞, then exists W′′, 𝑣 ′1, 𝑣

′
2, such

that
(1) 𝜎1 | 𝛾1 (𝑡1) [𝑥 ↦→ 𝑣1] −→∗v 𝜎 ′1 | 𝑣2
(2) 𝜎2 | 𝛾2 (𝑡2) [𝑥 ↦→ 𝑣2] −→∗v 𝜎 ′2 | 𝑣 ′2
(3) (𝜎 ′1, 𝜎 ′2) : W;W′;W′′
(4) (W;W′;W′′, 𝑣3, 𝑣4) ∈ V[[U]]𝛾
(5) (𝑥 ∈ 𝑟 ⇒ 𝑣 ′1 {

𝜎 ′1 (locs(𝛾1 (𝑟 )) ∩ locs(𝛾1 (𝜆𝑥 .𝑡1)) ∪ locs(𝑣1)) ∧
𝑣 ′2 {

𝜎 ′2 (locs(𝛾2 (𝑟 )) ∩ locs(𝛾2 (𝜆𝑥 .𝑡2)) ∪ locs(𝑣2)))
(6) (𝑥 ∉ 𝑟 ⇒ 𝑣 ′1 {

𝜎 ′1 (locs(𝛾1 (𝑟 )) ∩ locs(𝛾1 (𝜆𝑥.𝑡1))) ∧ 𝑣 ′2 {
𝜎 ′2 (locs(𝛾2 (𝑟 )) ∩ locs(𝛾2 (𝜆𝑥 .𝑡2))))

Proof. By Lemma 7.13, (W;W′, 𝛾 ; (𝑥 ↦→ (𝑣1, 𝑣2))) ∈ 𝐺 [[(Γ, 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ]]. Thus, there exists W′′,
such that (W;W′;W′′, 𝛾1 (𝑡1) [𝑥 ↦→ 𝑣1], 𝛾2 (𝑡2) [𝑥 ↦→ 𝑣2]) ∈ E[[𝑈 𝑟 𝜺]]𝛾𝑞,𝑥 , which can be used to prove
(1) - (4). (5) and (6) can be proved by inspecting 𝑥 ∈ 𝑟 , Lemma 7.8 and Lemma 7.18. □

Lemma 7.27 (Semantic Application). Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]]. If
(W;W′, 𝛾1 (𝜆𝑥.𝑡1), 𝛾2 (𝜆𝑥 .𝑡2)) ∈ V[[T𝑝∗∩𝑞∗ →𝜺 𝑈 𝑟 ]]𝛾 , and𝛾1 (𝜆𝑥 .𝑡1) {𝜎1 locs(𝛾1 (𝑞)), and𝛾2 (𝜆𝑥 .𝑡2) {𝜎2

locs(𝛾2 (𝑞)), and (W;W′;W′′, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾 , and 𝑣1 {dom1 (W;W′) locs(𝛾1 (𝑝)), and 𝑣2 {dom2 (W;W′)

locs(𝛾2 (𝑝)), and 𝑟 ⊆ 𝜑, 𝑥 , and 𝜺 ⊆ 𝑞, 𝑥 , and (𝜎1, 𝜎2) : W;W′;W′′ then there exists 𝑣2, 𝑣 ′2, 𝜎
′
1, 𝜎
′
2, W

′′′,
such that

(1) 𝜎1 | 𝛾1 (𝑡1) [𝑥 ↦→ 𝑣1] −→∗v 𝜎 ′1 | 𝑣2;
(2) 𝜎2 | 𝛾1 (𝑡2) [𝑥 ↦→ 𝑣2] −→∗v 𝜎 ′2 | 𝑣 ′2;
(3) (𝜎 ′1, 𝜎 ′2) : W;W′;W′′;W′′′;
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(4) (W;W′;W′′;W′′′, 𝑣2, 𝑣 ′2) ∈ V[[𝑈 ]]𝛾 ;
(5) 𝑥 ∈ 𝑟 ⇒ 𝑣 ′1 {

𝜎1 (locs(𝛾1 (𝑟 )) ∩ locs(𝛾1 (𝜆𝑥.𝑡1)) ∪ locs(𝑣1)) ∧
𝑣 ′2 {

𝜎2 (locs(𝛾2 (𝑟 )) ∩ locs(𝛾2 (𝜆𝑥 .𝑡2)) ∪ locs(𝑣2))
(6) 𝑥 ∉ 𝑟 ⇒ 𝑣 ′1 {

𝜎1 (locs(𝛾1 (𝑟 )) ∩ locs(𝛾1 (𝜆𝑥 .𝑡1))) ∧ 𝑣 ′2 {
𝜎2 (locs(𝛾2 (𝑟 )) ∩ locs(𝛾2 (𝜆𝑥.𝑡2)))

Proof. By Lemma 7.8, we know the following:
• locs(𝛾1 (𝜆𝑥 .𝑡1)) ⊆ dom1 (W;W′);
• locs(𝛾2 (𝜆𝑥 .𝑡2)) ⊆ dom2 (W;W′);
• locs(𝑣1) ⊆ dom1 (W;W′;W′′);
• locs(𝑣2) ⊆ dom2 (W;W′;W′′);

Then (1) - (4) can be proved by the assumption (W;W′, 𝛾1 (𝜆𝑥.𝑡1), 𝛾2 (𝜆𝑥 .𝑡2)) ∈ V[[T𝑝 →𝜺 𝑈 𝑟 ]]𝛾 ,
and (W;W′;W′′, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾 , and Lemma 7.25. (5) - (6) can be proved by inspecting 𝑥 ∈ 𝑟 . □

7.7 Compatibility Lemmas
The following compatibility lemmas show that the logical relations is compatible with all the
constructs of the language [Pierce 2004].

Lemma 7.28 (Compatibility: Alloc). Γ 𝜑 |= 𝜔 ≈log 𝜔 : 𝐴𝑙𝑙𝑜𝑐 ∅ ∅

Proof. By the typing context interpretation, value interpretation in Fig. 14 and Lemma 7.14. □

Lemma 7.29 (Compatibility: Unit). Γ 𝜑 |= unit ≈log unit : Unit∅ ∅

Proof. By the typing context interpretation, value interpretation in Fig. 14 and Lemma 7.15. □

Lemma 7.30 (Compatibility: Bool). Γ 𝜑 |= true ≈log true : 𝐵𝑜𝑜𝑙 ∅ ∅

Proof. By the typing context interpretation, value interpretation in Fig. 14 and Lemma 7.16. □

Lemma 7.31 (Compatibility: Bool). Γ 𝜑 |= false ≈log false : 𝐵𝑜𝑜𝑙 ∅ ∅

Proof. By the typing context interpretation, value interpretation in Fig. 14 and Lemma 7.16. □

Lemma 7.32 (Compatibility: Variables). If 𝑥 : 𝑇 𝑞 ∈ Γ and 𝑥 ⊆ 𝜑 , then Γ 𝜑 |= 𝑥 ≈log 𝑥 : 𝑇 𝑥 ∅

Proof. Immediate by the typing context interpretation in Fig. 14. □

Lemma 7.33 (Compatibility: 𝜆). If (Γ , 𝑥 : 𝑇 𝑝 )𝑞,𝑥 |= 𝑡1 ≈log 𝑡2 : 𝑈 𝑟 𝜺, 𝑞 ⊆ 𝜑 , then Γ 𝜑 |=
𝜆𝑥.𝑡1 ≈log 𝜆𝑥 .𝑡2 : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟 ) 𝑞 ∅.

Proof. Let (W, 𝛾) ∈ 𝐺 [[Γ]] and (𝜎1, 𝜎2) : W.
By definition of term interpretation, we need to show there exists W′, 𝜎 ′, 𝑣1 and 𝑣2 such that:
(1) 𝜎1 | 𝛾1 (𝜆𝑥.𝑡1) −→∗v 𝜎 ′1 | 𝑣1
(2) 𝜎2 | 𝛾2 (𝜆𝑥.𝑡2) −→∗v 𝜎 ′2 | 𝑣2
(3) (𝜎 ′1, 𝜎 ′2) : W;W′
(4) (W;W′, 𝑣1, 𝑣2) ∈ V[[(𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟 )]]𝛾
(5) 𝑣1 {

𝜎1 locs(𝛾1 (𝜑 ∩ 𝑞))
(6) 𝑣2 {

𝜎2 locs(𝛾2 (𝜑 ∩ 𝑞))
(7) 𝜎1 ↩→∅ 𝜎 ′1
(8) 𝜎2 ↩→∅ 𝜎 ′2
By reduction semantics, we pick W = ∅, 𝑣1 = 𝜆𝑥.𝑡1, 𝑣2 = 𝜆𝑥 .𝑡2, 𝜎 ′1 = 𝜎1 and 𝜎 ′2 = 𝜎2. Thus, (1)-

(3) are discharged. (4) can be proved by Lemma 7.10 and Lemma 7.26. (5) and (6) can be proved by
Lemma 7.18. (7) and (8) can be proved by Lemma 7.20. □
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Lemma 7.34 (Compatibility : Allocation). If Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : Alloc𝑞 𝜺1, and Γ 𝜑 ⊢ 𝑡3 ≈log 𝑡4 :
𝐵 ∅ 𝜺2, then Γ 𝜑 |= ref𝑡1 𝑡3 ≈log ref𝑡2 𝑡4 : (Ref 𝐵) ∅ 𝜺1 ▷ 𝜺2 ▷ 𝑞.

Proof. Let (W, 𝛾) ∈ 𝐺 [[Γ]] and (𝜎1, 𝜎2) : W. By the first assumption, we know that there exists
𝜎 ′1, 𝜎

′
2, W

′, 𝑣1 and 𝑣2, such that
• 𝛾1 (𝑡1) | 𝜎1 −→∗v 𝑣1 | 𝜎 ′1
• 𝛾2 (𝑡2) | 𝜎2 −→∗v 𝑣2 | 𝜎 ′2
• (𝜎 ′1, 𝜎 ′2) : W;W′
• (W;W′, 𝑣1, 𝑣2) ∈ V[[Alloc]]𝛾
• 𝑣1 {

𝜎1 locs(𝛾1 (𝜑 ∩ 𝑞))
• 𝑣2 {

𝜎2 locs(𝛾2 (𝜑 ∩ 𝑞))
• 𝜎1 ↩→locs(𝛾1 (𝜺1 ) ) 𝜎 ′1
• 𝜎2 ↩→locs(𝛾2 (𝜺1 ) ) 𝜎 ′2

By reduction semantics, we know 𝑣1 = 𝑣2 = 𝜔 .
By the second assumption, we know that there exists 𝜎 ′′1 , 𝜎

′′
2 , W

′′, 𝑣3 and 𝑣4, such that
• 𝛾1 (𝑡3) | 𝜎 ′1 −→∗v 𝑣3 | 𝜎 ′′1
• 𝛾2 (𝑡4) | 𝜎 ′2 −→∗v 𝑣4 | 𝜎 ′′2
• (𝜎 ′′1 , 𝜎 ′′2 ) : W;W′;W′′
• (W;W′;W′′, 𝑣3, 𝑣4) ∈ V[[B]]𝛾
• 𝑣3 {

𝜎 ′1 locs(𝛾1 (𝜑 ∩ ∅))
• 𝑣4 {

𝜎 ′2 locs(𝛾2 (𝜑 ∩ ∅))
• 𝜎 ′1 ↩→locs(𝛾1 (𝜺2 ) ) 𝜎 ′′1
• 𝜎 ′2 ↩→locs(𝛾2 (𝜺2 ) ) 𝜎 ′′2

By reduction semantics, we know
• ref𝜔 𝑣3 | 𝜎 ′′1 −→1

v ℓ1 | 𝜎 ′′1 ; (ℓ1 ↦→ 𝑣3), where ℓ1 ∉ dom(𝜎 ′′1 )
• ref𝜔 𝑣4 | 𝜎 ′′2 −→1

v ℓ2 | 𝜎 ′′2 ; (ℓ2 ↦→ 𝑣4), where ℓ2 ∉ dom(𝜎 ′′2 )
By Lemma 7.5, we know (𝜎 ′′1 ; (ℓ1 ↦→ 𝑣3), 𝜎 ′′2 ; (ℓ2 ↦→ 𝑣4)) : W;W′;W′′; ((ℓ1 ↦→ 𝑣3), (ℓ2 ↦→ 𝑣4), {(ℓ1, ℓ2)}).
The rest of the proof can be done by the definition of value interpretation, Lemma 7.22 and
Lemma 7.17. □

Lemma 7.35 (Compatibility: Dereference (!)). If Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : (Ref 𝐵) 𝑞 𝜺, then Γ 𝜑 |=!𝑡1 ≈log
!𝑡2 : 𝐵 ∅ 𝜺 ▷ 𝒒.

Proof. Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]] and (𝜎1, 𝜎2) : W.By the assumption, (W, 𝛾1 (𝑡1), 𝛾2 (𝑡2)) ∈ E[[Ref 𝐵 𝑞 𝜺]]𝛾𝜑 ,
and reduction semantics, we know there exists 𝜎 ′1, 𝜎

′
2, ℓ1 and ℓ2 such that

• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎 ′1 | ℓ1
• 𝜎2 | 𝛾2 (𝑡2) −→∗v 𝜎 ′2 | ℓ2
• (𝜎 ′1, 𝜎 ′2) : W;W′
• (W;W′, ℓ1, ℓ2) ∈ V[[Ref 𝐵]]𝛾
• ℓ1 {

𝜎1 locs(𝛾1 (𝜑 ∩ 𝑞))
• ℓ2 {

𝜎2 locs(𝛾2 (𝜑 ∩ 𝑞))
• 𝜎1 ↩→locs(𝛾1 (𝜺 ) ) 𝜎 ′1
• 𝜎2 ↩→locs(𝛾2 (𝜺 ) ) 𝜎 ′2

We can finish the proof by reduction semantics, value interpretation, Lemma 7.16, Lemma 7.21,
where we pick 𝜎 ′′1 to be 𝜎 ′1, 𝜎

′′
2 to be 𝜎 ′, and W′′ to be ∅.

□
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Lemma 7.36 (Compatibility: Assignments (:=)). If Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : (Ref B) 𝑞 𝜺1, Γ 𝜑 |= 𝑡3 ≈log
𝑡4 : B∅ 𝜺2, then Γ 𝜑 |= 𝑡1 := 𝑡3 ≈log 𝑡2 := 𝑡4 : Unit∅ 𝜺1 ▷ 𝜺2 ▷ 𝒒.

Proof. Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]] and (𝜎1, 𝜎2) : W. By the first assumption, we know that there
exists 𝜎 ′1, 𝜎

′
2, W

′, 𝑣1 and 𝑣2 such that
• 𝛾1 (𝑡1) | 𝜎1 −→∗v 𝑣1 | 𝜎 ′1
• 𝛾2 (𝑡2) | 𝜎2 −→∗v 𝑣2 | 𝜎 ′2
• (𝜎 ′1, 𝜎 ′2) : W;W′
• (W;W′, 𝑣1, 𝑣2) ∈ V[[Ref B]]𝛾
• 𝑣1 {

𝜎1 locs(𝛾1 (𝜑 ∩ 𝑞))
• 𝑣2 {

𝜎2 locs(𝛾2 (𝜑 ∩ 𝑞))
• 𝜎1 ↩→locs(𝛾1 (𝜺1 ) ) 𝜎 ′1
• 𝜎2 ↩→locs(𝛾2 (𝜺1 ) ) 𝜎 ′2

By the second assumption, we know that there exists 𝜎 ′′1 , 𝜎
′′
2 , W

′′, 𝑣3 and 𝑣4, such that
• 𝛾1 (𝑡3) | 𝜎 ′1 −→∗v 𝑣3 | 𝜎 ′′1
• 𝛾2 (𝑡4) | 𝜎 ′2 −→∗v 𝑣4 | 𝜎 ′′2
• (𝜎 ′′1 , 𝜎 ′′2 ) : W;W′;W′′
• (W;W′;W′′, 𝑣3, 𝑣4) ∈ V[[B]]𝛾
• 𝑣3 {

𝜎 ′1 locs(𝛾1 (𝜑 ∩ ∅))
• 𝑣4 {

𝜎 ′2 locs(𝛾2 (𝜑 ∩ ∅))
• 𝜎 ′1 ↩→locs(𝛾1 (𝜺2 ) ) 𝜎 ′′1
• 𝜎 ′2 ↩→locs(𝛾2 (𝜺2 ) ) 𝜎 ′′2

Then the proof can be done by the reduction semantics, Lemma 7.4, value interpretation, Lemma 7.15,
Lemma 7.19 and Lemma 7.22.

□

Lemma 7.37 (Compatibility: Applications (𝛽)). . If Γ 𝜑 |= 𝑡1 ≈log 𝑡2 :
(
𝑥 :𝑇 𝑝∗∩𝑞∗ →𝜺3 𝑈 𝑟

) 𝑞
𝜺2,

and Γ 𝜑 |= 𝑡3 ≈log 𝑡4 : 𝑇 𝑝 𝜺1, and 𝑥 ∉ fv(𝑈 ), and 𝑟 ⊆ 𝜑, 𝑥 , and and 𝜺3 ⊆ 𝜑, 𝑥 , and 𝜃 = [𝑝/𝑥], then
Γ 𝜑 |= 𝑡1 𝑡3 ≈log 𝑡2 𝑡4 : (𝑈 𝑟 𝜺1 ▷ 𝜺2 ▷ 𝜺3)𝜃 .

Proof. The proof is done by the definition of term interpretation, Lemma 7.27 and Lemma 7.22.
□

Lemma 7.38 (Compatibility: Let). If Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑆 𝑝 𝜺1, and (Γ , 𝑥 : 𝑆 𝑝∗∩𝜑∗)𝜑,𝑥 |= 𝑡3 ≈log 𝑡4 :
𝑇 𝑞 𝜺2, and 𝜃 = [𝑝/𝑥] and 𝑥 ∉ fv (𝑇 ), then Γ 𝜑 |= let 𝑥 = 𝑡1 in 𝑡3 ≈log let 𝑥 = 𝑡2 in 𝑡4 : (𝑇 𝑞 𝜺1▷𝜺2)𝜃

Proof. Since the t-let is a combination of rules t-abs, t-app and weakening, the proof is
analogous. □

Lemma 7.39 (Compatibility: Subtyping). If Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑆 𝑝 𝜺1 and Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2 and
𝑞, 𝜺2 ⊆ 𝜑 , then Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑇 𝑞 𝜺2.

Proof. By induction on the subtyping derivation. □

7.8 The Fundamental Theorem and Soundness
Theorem 7.40 (Fundamental Property). If Γ 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺, then Γ 𝜑 |= 𝑡 ≈log 𝑡 : 𝑇 𝑞 𝜺.

Proof. By induction on the derivation of Γ 𝜑 ⊢ 𝑡 : 𝑇 𝑞 𝜺. Each case follows from the correspond-
ing compatibility lemma. □
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(dce)
Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1

1 𝜺1 Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑞2
2 𝜺2 𝑡1 terminates 𝜺1 = ∅ or 𝜔

Γ 𝜑 |= let 𝑥 = 𝑡1 in 𝑡2 ≈log 𝑡2 : 𝑇 𝑞2
2 𝜺2

(comm)

Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 𝜺1

Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑞2
2 𝜺2 [Γ , 𝑥 : 𝑇 𝑞1∗∩𝜑∗

1 , 𝑦 : 𝑇 𝑞2∗∩(𝜑,𝑥 )∗
2 ] 𝜑,𝑥,𝑦 ⊢ 𝑡 : 𝑇 𝑞 𝜺

𝜺1∗ ∩ 𝜺2∗ = ∅ 𝑥 ∉ fv(𝑇 ) 𝑦 ∉ fv(𝑇 ) 𝜃 = [𝑞2/𝑦] [𝑞1/𝑥]
Γ 𝜑 |= let 𝑥 = 𝑡1 in let 𝑦 = 𝑡2 in 𝑡 ≈log let 𝑦 = 𝑡2 in let 𝑥 = 𝑡1 in 𝑡 : (𝑇 𝑞 𝜺1 ▷ 𝜺2 ▷ 𝜺)𝜃

(𝜆-hoist)

Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 ∅ [Γ , 𝑥 : 𝑇 𝑝 , 𝑦 : 𝑇 𝑞1∗∩(𝜑,𝑥 )∗

1 ] 𝑞,𝑥,𝑦 ⊢ 𝑡 : 𝑈 𝑟 𝜺
𝜃 = [𝑞1/𝑦] 𝑥 ∉ fv(𝑈 ) 𝑦 ∉ fv(𝑈 )

Γ 𝜑 |= (𝜆𝑥 : 𝑇 𝑝 . let 𝑦 = 𝑡1 in 𝑡) ≈log (let 𝑦 = 𝑡1 in 𝜆𝑥 : 𝑇 𝑝 .𝑡) : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟𝜃 )𝑞 ∅

(𝛽-inlining)
[Γ, 𝑥 : 𝑇 𝑝 ] 𝑞,𝑥 ⊢ 𝑡1 : 𝑈 𝑟 𝜺 Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑝

∅ 𝑥 ∉ fv(𝑈 ) 𝜃 = [𝑝/𝑥]
Γ 𝜑 |= (𝜆𝑥 : 𝑇 𝑝 .𝑡1) (𝑡2) ≈log 𝑡1 [𝑡2/𝑥] : (𝑈 𝑟 𝜺)𝜃

(e-cse)

Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 𝜺1

[Γ , 𝑥 : 𝑇 𝑞1∗∩𝜑∗
1 , 𝑦 : 𝑇 𝑞1∗∩(𝜑,𝑥 )∗

1 ] 𝜑,𝑥,𝑦 ⊢ 𝑡 : 𝑇 𝑞 𝜺 𝜔 ∉ 𝜺1 𝜃 = [𝑥/𝑦]
Γ 𝜑 |= (let 𝑥 = 𝑡1 in let 𝑦 = 𝑡1 in 𝑡) ≈log (let 𝑥 = 𝑡1 in 𝑡 𝜃 ) : (𝑇 𝑞 𝜺)𝜃 ▷ 𝜺1

Fig. 15. Equational rules for the 𝜆∗𝜀 -calculus.

Lemma 7.41 (Congruency of Binary Logical Relations). The binary logical relation is closed
under well-typed program contexts, i.e., if Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑇 𝑝 𝜺, and𝐶 : (Γ 𝜑 ;𝑇 𝑝 𝜺) ⇛ (Γ′𝜑 ′ ;𝑇 ′𝑝′ 𝜺′),
then Γ′𝜑

′ |= 𝐶 [𝑡1] ≈log 𝐶 [𝑡2] : 𝑇 ′𝑝
′
𝜺′.

Proof. By induction on the derivation of context 𝐶 . Each case follows from the corresponding
compatibility lemma and may use the fundamental theorem (Theorem 7.40) if necessary. □

Lemma 7.42 (Adeqacy of the binary logical relations). The binary logical relation preserves
termination, i.e., if ∅ |= 𝑡1 ≈log 𝑡2 : 𝑇 ∅ ∅, then ∃ 𝜎, 𝜎 ′, 𝑣 . ∅ | 𝑡1 −→∗v 𝜎 | 𝑣 ∧ ∅ | 𝑡2 −→∗v 𝜎 ′ | 𝑣 .

Proof. We know (∅,∅) ∈ 𝐺 [[∅]] by the interpretation of typing context. Then we can prove
the result by the binary term interpretation (Fig. 14). □

Theorem 7.43 (Soundness of Binary Logical Relations). The binary logical relation is sound
w.r.t. contextually equivalence, i.e., if Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑝 𝜺 and Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑝 𝜺, then Γ 𝜑 |= 𝑡1 ≈log 𝑡2 : 𝑇 𝑝 𝜺
implies Γ 𝜑 |= 𝑡1 ≈ctx 𝑡2 : 𝑇 𝑝 𝜺.

Proof. By the refined definition of contextual equivalence, to prove the result, we are given a
well-typed context𝐶 : (Γ 𝜑 ;𝑇 𝑝 𝜺) ⇛ (∅;𝐵 ∅ ∅), and we need to show ∃ 𝜎, 𝜎 ′, 𝑣 . ∅ | 𝐶 [𝑡1] −→∗v 𝜎 |
𝑣 ∧ ∅ | 𝐶 [𝑡2] −→∗v 𝜎 ′ | 𝑣 . By the assumption, and the congruency lemma (Lemma 7.41), we have
∅ |= 𝐶 [𝑡1] ≈log 𝐶 [𝑡2] : 𝐵 ∅ ∅, which leads to ∃ 𝜎, 𝜎 ′, 𝑣 . ∅ | 𝐶 [𝑡1] −→∗v 𝜎 | 𝑣 ∧ ∅ | 𝐶 [𝑡2] −→∗v 𝜎 ′ | 𝑣
by the adequacy lemma (Lemma 7.42). □

7.9 Equational Rules
Fig. 15 shows equational rules for 𝜆∗𝜀 with effects specifying logically equivalent terms. Rule (dce)
permits the removal of a terminating term, 𝑡1, whose computation result is an unused value, provided
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that the effect of that computation only allows allocation. Removing a term with effects may not
be sound, as the effects could be observed by the following computations. Rule (comm) permits
re-ordering of two terms if their effects are separate, which entails disjoint sets of store locations
(Corollary 2.13). Rule (𝜆-hoist) permits a pure computation to be moved out of the abstraction
boundary. Rule (𝛽-inlining) permits replacing a function call site 𝑡2 with the body of the called
function, provided that 𝑡2 is pure. Rule (e-cse) permits removing a duplicated computation, provided
that no fresh allocations occur during the reduction of the term. The rest of this section shows the
proofs of those equational rules by using our logical relations.

Lemma 7.44 (Dead Code Elimination). If Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 𝜺1, and Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑞2

2 𝜺2, and 𝜺1 = ∅ or
𝜔 , and 𝑡1 terminates, then Γ 𝜑 ⊢ let 𝑥 = 𝑡1 in 𝑡2 ≈log 𝑡2 : 𝑇 𝑞2

2 𝜺2.

Proof. By the fundamental property (Theorem 7.40), we know on the first assumption, we know
Γ 𝜑 |= 𝑡1 ≈log 𝑡1 : 𝑇 𝑞1

1 𝜺1.
Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]] and (𝜎1, 𝜎2) : W. By the definition of binary logical relations and binary

term interpretation, we know there exists 𝜎11, 𝜎12, W1, 𝑣11 and 𝑣12, such that
• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎11 | 𝑣11
• 𝜎2 | 𝛾2 (𝑡1) −→∗v 𝜎12 | 𝑣12
• (W;W1, 𝑣11, 𝑣12) ∈ V[[T1]]𝛾
• (𝜎11, 𝜎12) : W;W1
• 𝑣11 {

𝜎1 (locs(𝛾1 (𝜑 ∩ 𝑞1)))
• 𝑣12 {

𝜎2 (locs(𝛾2 (𝜑 ∩ 𝑞1)))
• 𝜎1 ↩→locs(𝛾1 (𝜺1 ) ) 𝜎11
• 𝜎2 ↩→locs(𝛾2 (𝜺1 ) ) 𝜎12

By 𝜺1 = ∅ or 𝜔 , we know 𝜎11 = 𝜎1 ∗ 𝜎𝑓 𝑟1, and 𝜎12 = 𝜎2 ∗ 𝜎𝑓 𝑟2.
By the fundamental property (Theorem 7.40) again, we know Γ 𝜑 |= 𝑡2 ≈log 𝑡2 : 𝑇 𝑞2

2 𝜺2.
By the binary term interpretation, we know there exists 𝜎21, 𝜎22, W2, 𝑣21 and 𝑣22, such that
• 𝜎1 | 𝛾1 (𝑡2) −→∗v 𝜎21 | 𝑣21
• 𝜎2 | 𝛾2 (𝑡2) −→∗v 𝜎22 | 𝑣22
• (W;W2, 𝑣21, 𝑣22) ∈ V[[T2]]𝛾
• (𝜎21, 𝜎22) : W;W2
• 𝑣21 {

𝜎1 (locs(𝛾1 (𝜑 ∩ 𝑞2)))
• 𝑣22 {

𝜎2 (locs(𝛾2 (𝜑 ∩ 𝑞2)))
• 𝜎1 ↩→locs(𝛾1 (𝜺2 ) ) 𝜎11
• 𝜎2 ↩→locs(𝛾2 (𝜺2 ) ) 𝜎12

From the left, by the reduction semantics, we have:
• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎1 ∗ 𝜎𝑓 𝑟1 | 𝑣11
• 𝜎1 ∗ 𝜎𝑓 𝑟1 | 𝛾1 (𝑡2) −→∗v 𝜎21 | 𝑣 ′21

By the deterministic of reduction semantics, we know 𝑣21 = 𝑣 ′21.
Form the right, by the reduction semantics, we know 𝜎2 | 𝛾2 (𝑡2) −→∗v 𝜎22 | 𝑣22.
By the fact we have above, the proof is done.

□

Lemma 7.45 (comm). If Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 𝜺1, and Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑞2

2 𝜺2, and [Γ , 𝑥 : 𝑇 𝑞1∗∩𝜑∗
1 , 𝑦 :

𝑇
𝑞2∗∩(𝜑,𝑥 )∗
2 ] 𝜑,𝑥,𝑦 ⊢ 𝑡 : 𝑇 𝑞 𝜺, and 𝜺1∗∩ 𝜺2∗ = ∅, and 𝑥 ∉ fv(𝑇 ), and 𝑦 ∉ fv(𝑇 ), and 𝜃 = [𝑞2/𝑦] [𝑞1/𝑥],
then Γ 𝜑 |= let 𝑥 = 𝑡1 in let 𝑦 = 𝑡2 in 𝑡 ≈log let 𝑦 = 𝑡2 in let 𝑥 = 𝑡1 in 𝑡 : (𝑇 𝑞 𝜺1 ▷ 𝜺2 ▷ 𝜺)𝜃 .

Proof. By the fundamental property (Theorem 7.40), we know Γ 𝜑 |= 𝑡1 ≈log 𝑡1 : 𝑇 𝑞1
1 𝜺1.
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Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]] and (𝜎1, 𝜎2) : W. By the definition of binary logical relations and binary
term interpretation, we know there exists 𝜎11, 𝜎12, W1, 𝑣11 and 𝑣12, such that
• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎11 | 𝑣11
• 𝜎2 | 𝛾2 (𝑡1) −→∗v 𝜎12 | 𝑣12
• (W;W1, 𝑣11, 𝑣12) ∈ V[[T1]]𝛾
• (𝜎11, 𝜎12) : W;W1
• 𝑣11 {

𝜎1 (locs(𝛾1 (𝜑 ∩ 𝑞1)))
• 𝑣12 {

𝜎2 (locs(𝛾2 (𝜑 ∩ 𝑞1)))
• 𝜎1 ↩→locs(𝛾1 (𝜺1 ) ) 𝜎11
• 𝜎2 ↩→locs(𝛾2 (𝜺1 ) ) 𝜎12

By the fundamental property (Theorem 7.40) again, we know Γ 𝜑 |= 𝑡2 ≈log 𝑡2 : 𝑇 𝑞2
2 𝜺2. By the

binary term interpretation, we know there exists 𝜎21, 𝜎22, W2, 𝑣21 and 𝑣22, such that
• 𝜎1 | 𝛾1 (𝑡2) −→∗v 𝜎21 | 𝑣21
• 𝜎2 | 𝛾2 (𝑡2) −→∗v 𝜎22 | 𝑣22
• (W;W2, 𝑣21, 𝑣22) ∈ V[[T2]]𝛾
• (𝜎21, 𝜎22) : W;W2
• 𝑣21 {

𝜎1 (locs(𝛾1 (𝜑 ∩ 𝑞2)))
• 𝑣22 {

𝜎2 (locs(𝛾2 (𝜑 ∩ 𝑞2)))
• 𝜎1 ↩→locs(𝛾1 (𝜺2 ) ) 𝜎21
• 𝜎2 ↩→locs(𝛾2 (𝜺2 ) ) 𝜎22

Let 𝜎1𝑎 = 𝜎1↓ locs(𝛾1 (𝜺1∗)), and 𝜎1𝑏 = 𝜎1↓ locs(𝛾1 (𝜺2∗)), and
𝜎1𝑐 = 𝜎1↓ (dom(𝜎1) − locs(𝛾1 (𝜺1∗)) − locs(𝛾1 (𝜺2∗))).
By Lemma 7.24, we know,
(a) 𝜎11 = 𝜎 ′1𝑎 ∗ 𝜎1𝑏 ∗ 𝜎1𝑐 ∗ 𝜎𝑓 𝑟11, for some 𝜎 ′1𝑎 , where 𝜎𝑓 𝑟11 ∗ 𝜎1; and
(b) 𝜎21 = 𝜎1𝑎 ∗ 𝜎 ′1𝑏 ∗ 𝜎1𝑐 ∗ 𝜎𝑓 𝑟21, for some 𝜎 ′1𝑏 , where 𝜎𝑓 𝑟21 ∗ 𝜎1; and
(c) 𝜎𝑓 𝑟11 ∗ 𝜎𝑓 𝑟21.
Let 𝜎2𝑎 = 𝜎2↓ locs(𝛾2 (𝜺1∗)), and 𝜎2𝑏 = 𝜎2↓ locs(𝛾2 (𝜺2∗)), and
𝜎2𝑐 = 𝜎2↓ (dom(𝜎2) − locs(𝛾2 (𝜺1∗)) − locs(𝛾2 (𝜺2∗))).
By Lemma 7.24, we know,
(d) 𝜎12 = 𝜎 ′2𝑎 ∗ 𝜎2𝑏 ∗ 𝜎2𝑐 ∗ 𝜎𝑓 𝑟12, for some 𝜎 ′2𝑎 , where 𝜎𝑓 𝑟12 ∗ 𝜎2; and
(e) 𝜎22 = 𝜎2𝑎 ∗ 𝜎 ′2𝑏 ∗ 𝜎2𝑐 ∗ 𝜎𝑓 𝑟22, for some 𝜎 ′2𝑏 , where 𝜎𝑓 𝑟22 ∗ 𝜎2; and
(f) 𝜎𝑓 𝑟12 ∗ 𝜎𝑓 𝑟22.
From the left, by the deterministic of reduction semantics and (a), we know:
• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎 ′1𝑎 ∗ 𝜎1𝑏 ∗ 𝜎1𝑐 ∗ 𝜎𝑓 𝑟11 | 𝑣11
• 𝜎 ′1𝑎 ∗ 𝜎1𝑏 ∗ 𝜎1𝑐 ∗ 𝜎𝑓 𝑟11 | 𝛾1 (𝑡2) −→∗v 𝜎 ′1𝑎 ∗ 𝜎 ′1𝑏 ∗ 𝜎1𝑐 ∗ 𝜎𝑓 𝑟11 ∗ 𝜎

′
𝑓 𝑟21 | 𝑣21

From the right, by the deterministic of reduction semantics and (e), we know
• 𝜎2 | 𝛾2 (𝑡2) −→∗v 𝜎2𝑎 ∗ 𝜎 ′2𝑏 ∗ 𝜎2𝑐 ∗ 𝜎𝑓 𝑟22 | 𝑣22
• 𝜎2𝑎 ∗ 𝜎 ′2𝑏 ∗ 𝜎2𝑐 ∗ 𝜎𝑓 𝑟22 | 𝛾1 (𝑡1) −→

∗
v 𝜎
′
2𝑎 ∗ 𝜎 ′2𝑏 ∗ 𝜎2𝑐 ∗ 𝜎𝑓 𝑟22 ∗ 𝜎

′
𝑓 𝑟12 | 𝑣12

Let 𝜎𝑐 = 𝜎 ′1𝑎 ∗ 𝜎 ′1𝑏 ∗ 𝜎1𝑐 ∗ 𝜎𝑓 𝑟11 ∗ 𝜎
′
𝑓 𝑟21 and 𝜎𝑑 = 𝜎2𝑎 ∗ 𝜎 ′2𝑏 ∗ 𝜎2𝑐 ∗ 𝜎𝑓 𝑟22 ∗ 𝜎

′
𝑓 𝑟12.

We know that there exists W′, such that (𝜎𝑐 , 𝜎𝑑 ) : W;W′, and W;W1 ⊆ W;W′. and W;W2 ⊆
W;𝑊 ′.

By Lemma 7.7, we know that (W;W′, 𝑣11, 𝑣12) ∈ V[[T1]]𝛾 , and (W;W′, 𝑣21, 𝑣22) ∈ V[[T2]]𝛾
By the reduction semantics, and binary term interpretation, we know that
As 𝛾2 (𝑡1) [𝑦 ↦→ 𝑣22] [𝑥 ↦→ 𝑣12] = 𝛾2 (𝑡1) [𝑥 ↦→ 𝑣12] [𝑦 ↦→ 𝑣22], we have
(W;W′, 𝛾1 (𝑡1) [𝑥 ↦→ 𝑣11] [𝑦 ↦→ 𝑣21], 𝛾2 (𝑡1) [𝑦 ↦→ 𝑣22] [𝑥 ↦→ 𝑣12]) ∈ E[[𝑇 𝑞 𝜺]]𝛾𝜑 by the fundamental

propety (Theorem 7.40) on the second assumption.
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□

Lemma 7.46 (𝜆-hoist). If Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 ∅, and [Γ , 𝑥 : 𝑇 𝑝 , 𝑦 : 𝑇 𝑞1∗∩(𝜑,𝑥 )∗

1 ] 𝑞,𝑥,𝑦 ⊢ 𝑡 : 𝑈 𝑟 𝜺,
and 𝜃 = [𝑞1/𝑦], and 𝑥 ∉ fv(𝑈 ), and 𝑦 ∉ fv(𝑈 ), then Γ 𝜑 |= (𝜆𝑥 : 𝑇 𝑝 . let 𝑦 = 𝑡1 in 𝑡) ≈log (let 𝑦 =

𝑡1 in 𝜆𝑥 : 𝑇 𝑝 .𝑡) : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟𝜃 )𝑞 ∅.

Proof. Let 𝑡𝜆
def
= (𝜆𝑥 . let 𝑦 = 𝑡1 in 𝑡), and 𝑡𝑏

def
= let 𝑦 = 𝑡1 in 𝑡 .

By the fundamental property (Theorem 7.40), we know Γ 𝜑 |= 𝑡𝜆 ≈log 𝑡𝜆 : (𝑥 : 𝑇 𝑝 →𝜺 𝑈 𝑟𝜃 )𝑞 ∅.
Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]] and (𝜎1, 𝜎2) : W.
By the definition of binary logical relations and function type interpretation, we know
• locs(𝛾1 (𝑡𝜆)) ⊆ dom1 (W)
• locs(𝛾2 (𝑡𝜆)) ⊆ dom2 (W)

Let 𝑣1, 𝑣2, W′, 𝜎 ′1 and 𝜎
′
2 be arbitrary, such that

• (𝜎 ′1, 𝜎 ′2) : W;W′
• (W;W′, 𝑣1, 𝑣2) ∈ V[[𝑇 ]]𝛾

and we know that there exists W′′, 𝜎 ′′1 , 𝜎
′′
2 , 𝑣3, 𝑣4, such that

(a) 𝜎 ′1 | 𝛾1 (𝑡𝑏) [𝑥 ↦→ 𝑣1] −→∗v 𝜎 ′′1 | 𝑣3
(b) 𝜎 ′2 | 𝛾2 (𝑡𝑏) [𝑥 ↦→ 𝑣2] −→∗v 𝜎 ′′2 | 𝑣4
(c) (𝜎 ′′, 𝜎 ′′) : W;W′;W′′
(d) (W;W′;W′′, 𝑣3, 𝑣4) ∈ V[[𝑈 ]]𝛾

By Theorem 7.40 again, we know Γ 𝜑 |= 𝑡1 ≈log 𝑡1 : 𝑇 𝑞1
1 ∅. By the definition of binary logical

relations and term interpretation, we know (W, 𝑡1, 𝑡1) ∈ E[[𝑇 𝑞1
1 ∅]]𝛾𝜑 . Then we know there exists

W1, 𝜎𝑎 , 𝜎𝑏 , 𝑣𝑎 and 𝑣𝑏 such that
• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎𝑎 | 𝑣𝑥𝑎
• 𝜎2 | 𝛾2 (𝑡1) −→∗v 𝜎𝑏 | 𝑣𝑥𝑏
• (𝜎𝑎, 𝜎𝑏) : W;W1
• (W;W1, 𝑣𝑥𝑎, 𝑣𝑥𝑏) ∈ V[[𝑇1]]𝛾
∗ 𝑣𝑥𝑎 {

𝜎1 locs(𝛾1 (𝜑)) ∩ locs(𝛾1 (𝑞1))
∗∗ 𝑣𝑥𝑏 {

𝜎2 locs(𝛾2 (𝜑)) ∩ locs(𝛾2 (𝑞1))
By Lemma 7.20, we know𝜎𝑎 = 𝜎1,𝜎𝑏 = 𝜎2, andW1 = ∅. By Lemma 7.7, we know (W;W′, 𝑣𝑥𝑎, 𝑣𝑥𝑏) ∈
V[[𝑇1]]𝛾 .
Now, we can further specify the reduction of 𝑡𝑏 as
(A) 𝜎 ′1 | 𝛾1 (𝑡) [𝑦 ↦→ 𝑣𝑥𝑎] −→∗v 𝜎 ′′1 | 𝑣3
(B) 𝜎 ′2 | 𝛾2 (𝑡) [𝑦 ↦→ 𝑣𝑥𝑏] −→∗v 𝜎 ′′2 | 𝑣4
Combining (a) and (A), and we have
(1) 𝜎 ′1 | 𝛾1 (𝑡) [𝑥 ↦→ 𝑣1] [𝑦 ↦→ 𝑣𝑥𝑎] −→∗v 𝜎 ′′1 | 𝑣3
(2) 𝜎 ′2 | 𝛾2 (𝑡) [𝑥 ↦→ 𝑣2] [𝑦 ↦→ 𝑣𝑥𝑏] −→∗v 𝜎 ′′2 | 𝑣4
By the second assumption and Theorem 7.40, we know

[Γ , 𝑥 : 𝑇 𝑝 , 𝑦 : 𝑇 𝑞1∗∩(𝜑,𝑥 )∗
1 ] 𝑞,𝑥,𝑦 |= 𝑡 ≈log 𝑡 : 𝑈 𝑟 𝜺

.
By Lemma 7.11, we know (W, 𝛾) ∈ 𝐺 [[[Γ] 𝑞,𝑥,𝑦]]. By ∗ and ∗∗, we apply Lemma 7.13, and have

(W;W′, 𝛾 ; (𝑥 ↦→ (𝑣1, 𝑣2)); (𝑦 ↦→ (𝑣𝑥𝑎, 𝑣𝑥𝑏))) ∈ 𝐺 [[[Γ , 𝑥 : 𝑇 𝑝 , 𝑦 : 𝑇 𝑞1∗∩(𝜑,𝑥 )∗
1 ] 𝑞,𝑥,𝑦]]

By definition of binary logic relations and function type interpretation, we
(i) 𝜎 ′1 | (𝛾1; (𝑥 ↦→ 𝑣1); (𝑦 ↦→ 𝑣𝑥𝑎))𝑡1 −→∗v 𝜎 ′′′1 | 𝑣5
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(ii) 𝜎 ′2 | (𝛾2; (𝑥 ↦→ 𝑣2); (𝑦 ↦→ 𝑣𝑥𝑎))𝑡1 −→∗v 𝜎 ′′′2 | 𝑣6
We know 𝛾1 (𝑡) [𝑥 ↦→ 𝑣1] [𝑦 ↦→ 𝑣𝑥𝑎] = (𝛾1; (𝑥 ↦→ 𝑣1); (𝑦 ↦→ 𝑣𝑥𝑎))𝑡1, and
𝛾2 (𝑡) [𝑥 ↦→ 𝑣2] [𝑦 ↦→ 𝑣𝑥𝑏] = (𝛾2; (𝑥 ↦→ 𝑣2); (𝑦 ↦→ 𝑣𝑥𝑎))𝑡1.
By the deterministic of the reduction semantics, we know 𝑣3 = 𝑣5 and 𝑣4 = 𝑣6. By the fact we

have, the proof is done. □

The following lemma is used in the proof of 𝛽-inlining.

Lemma 7.47. (Γ, 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ⊢ 𝑡1 : 𝑈 𝑟 𝜺, and Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑝 ∅, and 𝑥 ∉ fv(𝑈 ), and 𝜃 = [𝑝/𝑥], then
Γ 𝜑 |= 𝑡1 [𝑥/𝑡2] ≈log 𝑡1 [𝑥/𝑡2] : (𝑈 𝑟 𝜺)𝜃 .

Proof. By induction on the type derivation on the first. Each case follows from the corresponding
compatibility lemma. □

Lemma 7.48 (𝛽-inlining). If (Γ, 𝑥 : 𝑇 𝑝 )𝑞,𝑥 ⊢ 𝑡1 : 𝑈 𝑟 𝜺, and Γ 𝜑 ⊢ 𝑡2 : 𝑇 𝑝 ∅, and 𝑥 ∉ fv(𝑈 ), and
𝜃 = [𝑝/𝑥], then Γ 𝜑 ⊢ (𝜆𝑥.𝑡1) (𝑡2) ≈log 𝑡1 [𝑥/𝑡2] : (𝑈 𝑟 𝜺)𝜃 .

Proof. By the fundamental property (Theorem 7.40), we know Γ 𝜑 |= 𝑡2 ≈log 𝑡2 : 𝑇 𝑝 ∅.
Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]] and (𝜎1, 𝜎2) : W. By the definition of binary logical relations and binary

term interpretation, we know there exists 𝜎21, 𝜎22, W2, 𝑣𝑥1 and 𝑣𝑥2, such that
• 𝜎1 | 𝛾1 (𝑡2) −→∗v 𝜎21 | 𝑣𝑥1
• 𝜎2 | 𝛾2 (𝑡2) −→∗v 𝜎22 | 𝑣𝑥2
• (W;W2, 𝑣𝑥1, 𝑣𝑥2) ∈ V[[T]]𝛾
• (𝜎21, 𝜎22) : W;W2
• 𝑣𝑥1 {

𝜎1 (locs(𝛾1 (𝜑)) ∩ locs(𝛾1 (𝑝)))
• 𝑣𝑥2 {

𝜎2 (locs(𝛾2 (𝜑)) ∩ locs(𝛾2 (𝑝)))
• 𝜎1 ↩→∅ 𝜎21
• 𝜎2 ↩→∅ 𝜎22

By Lemma 7.20, we know 𝜎21 = 𝜎1, 𝜎22 = 𝜎2. Then by definition of world, W2 = ∅.
Now we know (W, 𝑣𝑥1, 𝛾2 (𝑡2)) ∈ E[[𝑇 𝑞 ∅]]𝛾𝜑 by definition of term interpretation.
We know Γ 𝜑 |= (𝜆𝑥 .𝑡1) (𝑡2) ≈log (𝜆𝑥 .𝑡1) (𝑡2) : (𝑈 𝑟 𝜺)𝜃 .
By the definition of binary logical relations and binary term interpretation, we know there exists

𝜎 ′1, 𝜎
′
2, W1, 𝑣𝑦1 and 𝑣𝑦2, such that
• 𝜎1 | 𝛾1 (𝑡1) [𝑥 ↦→ 𝑣𝑥1] −→∗v 𝑣𝑦1 | 𝜎 ′1
• 𝜎2 | 𝛾2 (𝑡1) [𝑥 ↦→ 𝑣𝑥2] −→∗v 𝑣𝑦2 | 𝜎 ′2
• (𝜎 ′1, 𝜎 ′2) : W;W1
• (W;W1, 𝑣𝑦1, 𝑣𝑦2) ∈ V[[U]]𝛾

By Lemma 7.47, the definition of binary logical relations and binary term interpretation, we
know there exists 𝜎3, 𝜎4, W′, 𝑣3 and 𝑣4, such that
• 𝜎1 | 𝛾1 (𝑡1 [𝑥/𝑡2]) −→∗v 𝜎3 | 𝑣3
• 𝜎2 | 𝛾2 (𝑡1 [𝑥/𝑡2]) −→∗v 𝜎4 | 𝑣4
• (𝜎3, 𝜎4) : W;W′
• (W;W′, 𝑣3, 𝑣4) ∈ V[[U]]𝛾

By (W, 𝑣𝑥1, 𝛾2 (𝑡2)) ∈ E[[𝑇 𝑞 ∅]]𝛾𝜑 , we know 𝑣4 = 𝑣𝑦2. Then we are done.
□

The following lemma is used in the proof of Lemma 7.50.

Lemma 7.49. If Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 𝜺1 and [Γ , 𝑥 : 𝑇 𝑞1∗∩𝜑∗

1 , 𝑦 : 𝑇 𝑞1∗∩(𝜑,𝑥 )∗
1 ] 𝜑,𝑥,𝑦 ⊢ 𝑡 : 𝑇 𝑞 𝜺, and

𝜃 = [𝑥/𝑦], and 𝜔 ∉ 𝜺1, then Γ 𝜑 |= (let 𝑥 = 𝑡1 in 𝑡 𝜃 ) ≈log (let 𝑥 = 𝑡1 in 𝑡 𝜃 ) : (𝑇 𝑞 𝜺)𝜃 ▷ 𝜺1.
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Proof. By induction on the type derivation on the second. Each case follows from the corre-
sponding compatibility lemma. □

Lemma 7.50 (e-cse). If Γ 𝜑 ⊢ 𝑡1 : 𝑇 𝑞1
1 𝜺1, and [Γ , 𝑥 : 𝑇 𝑞1∗∩𝜑∗

1 , 𝑦 : 𝑇 𝑞2∗∩(𝜑,𝑥 )∗
2 ] 𝜑,𝑥,𝑦 ⊢ 𝑡 : 𝑇 𝑞 𝜺, and

𝜔 ∉ 𝜺1, and 𝜃 = [𝑥/𝑦], then Γ 𝜑 |= (let 𝑥 = 𝑡1 in let𝑦 = 𝑡1 in 𝑡) ≈log (let 𝑥 = 𝑡1 in 𝑡 𝜃 ) : (𝑇 𝑞 𝜺)𝜃 ▷𝜺1.

Proof. By the fundamental property (Theorem 7.40), we know Γ 𝜑 |= 𝑡1 ≈log 𝑡1 : 𝑇 𝑞1
1 𝜺1.

Let (W, 𝛾) ∈ 𝐺 [[Γ 𝜑 ]] and (𝜎1, 𝜎2) : W. By the definition of binary logical relations and binary
term interpretation, we know there exists 𝜎11, 𝜎12, W1, 𝑣11 and 𝑣12, such that
• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎11 | 𝑣11
• 𝜎2 | 𝛾2 (𝑡1) −→∗v 𝜎12 | 𝑣12
• (W;W′, 𝑣11, 𝑣12) ∈ V[[T1]]𝛾
• (𝜎11, 𝜎12) : W;W1
• 𝑣11 {

𝜎1 (locs(𝛾1 (𝜑)) ∩ locs(𝛾1 (𝑞1)))
• 𝑣12 {

𝜎2 (locs(𝛾2 (𝜑)) ∩ locs(𝛾2 (𝑞1)))
• 𝜎1 ↩→locs(𝛾1 (𝜺1 ) ) 𝜎11
• 𝜎2 ↩→locs(𝛾2 (𝜺1 ) ) 𝜎12

As 𝜔 ∉ 𝜺1, we know W1 = ∅.
From the left, by the reduction semantics, we know there exists 𝜎11, 𝜎12, W1, 𝑣11 and 𝑣12, such

that
• 𝜎1 | 𝛾1 (𝑡1) −→∗v 𝜎11 | 𝑣11
• 𝜎11 | 𝛾1 (𝑡1) −→∗v 𝜎 ′11 | 𝑣 ′11
• 𝜎 ′11 | 𝛾1 (𝑡 [𝑥 ↦→ 𝑣11] [𝑦 ↦→ 𝑣 ′11]) −→∗v 𝜎 ′1 | 𝑣1

where 𝑣11 = 𝑣 ′11 and 𝜎11 = 𝜎 ′11, by the deterministic of the reduction semantics.
Thus, the last reduction step can be re-written as

𝜎11 | 𝛾1 (𝑡 [𝑥 ↦→ 𝑣11] [𝑦 ↦→ 𝑣11]) −→∗v 𝜎 ′1 | 𝑣1,

where dom(𝜎11) = dom1𝑊 .
By the second assumption and Theorem 7.40, we know

[Γ , 𝑥 : 𝑇 𝑞1∗∩𝜑∗
1 , 𝑦 : 𝑇 𝑞2∗∩(𝜑,𝑥 )∗

2 ] 𝜑,𝑥,𝑦 |= 𝑡 ≈log 𝑡 : 𝑇 𝑞 𝜺

.
By Lemma 7.49, we know

Γ 𝜑 |= (let 𝑥 = 𝑡1 in 𝑡 𝜃 ) ≈log (let 𝑥 = 𝑡1 in 𝑡 𝜃 ) : (𝑇 𝑞 𝜺)𝜃 ▷ 𝜺1 .

By definition of binary logic relations and term interpretation, after reducing 𝑡1, we know there
exists 𝜎1𝑎 , 𝜎2𝑎 , W2, 𝑣3 and 𝑣4, such that
• 𝜎11 | (𝛾1) (𝑡𝜃 ) [𝑥 ↦→ 𝑣11] −→∗v 𝜎1𝑎 | 𝑣3
• 𝜎12 | (𝛾2) (𝑡𝜃 ) [𝑥 ↦→ 𝑣12] −→∗v 𝜎2𝑎 | 𝑣4
• (𝜎1𝑎, 𝜎2𝑎) : W;W1;W2
• 𝑣11 {

𝜎1𝑎 (locs(𝛾1 (𝜑)) ∩ locs(𝛾1 (𝑞 𝜃 )))
• 𝑣12 {

𝜎2𝑎 (locs(𝛾2 (𝜑)) ∩ locs(𝛾2 (𝑞 𝜃 )))
• 𝜎1𝑎 ↩→locs(𝛾1 (𝜺𝜃▷𝜺1 ) ) 𝜎11
• 𝜎2𝑎 ↩→locs(𝛾2 (𝜺𝜃▷𝜺2 ) ) 𝜎12

We know (𝛾1 (𝑡 [𝑥/𝑦])) [𝑥 ↦→ 𝑣11] = (𝛾1 (𝑡 [𝑣11/𝑦])) [𝑥 ↦→ 𝑣11]. Then we know 𝑣1 = 𝑣3. By the fact
we have, the proof is done.

□
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𝐶 ::= □ | let 𝑥 = 𝐶 in 𝑔 | let 𝑥 = 𝜆𝑦.𝐶 in 𝑔 | let 𝑥 = 𝑏 in 𝐶

Context Typing Rules 𝐶 : (Γ 𝜑 ;𝑇 𝑞 𝜺) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺)

Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2

□ : (Γ 𝜑 ; 𝑆 𝑝 𝜺1) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺2)
(c-hole)

𝐶 : (Γ′𝜑 ′ ;𝑈 ′ 𝑟
′
𝜺1) ⇛ (Γ 𝜑 ;𝑈 𝑟 𝜺2) (Γ, 𝑥 : 𝑈 𝑟∗∩𝜑∗)𝜑,𝑥 ⊢M 𝑔 : 𝑇 𝑝 𝜺3

𝑥 ∉ fv(𝑇 ) 𝜃 = [𝑟/𝑥]
let 𝑥 = 𝐶 in 𝑔 : (Γ′𝜑 ′ ;𝑈 ′ 𝑟

′
𝜺1) ⇛ (Γ 𝜑 ; (𝑇 𝑝 𝜺2 ▷ 𝜺3)𝜃 )

(c-let-1)

𝐶 : (Γ′𝜑 ′ ;𝑈 ′ 𝑟
′
𝜺1) ⇛ ((Γ, 𝑦 : 𝑆 𝑝 ) 𝑞

′′,𝑦 ;𝑇 𝑞 𝜺2)
(Γ, 𝑥 : ((𝑦 : 𝑆 𝑝 ) →𝜺2 𝑇 𝑞) 𝑞′′∗∩𝜑∗)𝜑,𝑥 ⊢M 𝑔 : 𝑈 𝑟 𝜺3

𝑥 ∉ fv(𝑈 ) 𝜃 = [𝑞′′/𝑥] 𝑞′′ ⊆ 𝜑

let 𝑥 = 𝜆𝑦.𝐶 in 𝑔 : (Γ′𝜑 ′ ;𝑈 ′ 𝑟
′
𝜺1) ⇛ (Γ 𝜑 ; (𝑈 𝑟 𝜺3)𝜃 )

(c-let-𝜆)

Γ 𝜑 ⊢M 𝑏 : 𝑆 𝑟 𝜺1
𝐶 : (Γ′𝜑 ′ ;𝑈 ′ 𝑟

′
𝜺2) ⇛ ((Γ, 𝑥 : 𝑆 𝑟∗∩𝜑∗) 𝜑,𝑥 ;𝑇 𝑝 𝜺3)

𝑥 ∉ fv(𝑇 ) 𝜃 = [𝑟/𝑥]
let 𝑥 = 𝑏 in 𝐶 : (Γ′𝜑 ′ ;𝑈 ′ 𝑟

′
𝜺2) ⇛ (Γ 𝜑 ; (𝑇 𝑝 𝜺1 ▷ 𝜺3)𝜃 )

(c-let-2)

Fig. 16. Context typing rules for the 𝜆∗M-Calculus.

8 OPTIMIZATION RULES AND EQUATIONAL THEORY OF 𝜆∗G
In this section, we justify the soundness of the optimization rules shown in the main paper, i.e., they
equate contextually equivalent graphs. Our approach reuses the logical relation development for
the direct-style 𝜆∗𝜀 system from Section 7, through the use of a “round-trip” translation exploiting
the functional properties of dependency erasure and synthesis. The key point is that this is already
enough: dependencies, a type-level artifact derived from the effects annotated in graphs, possess
no operational meaning other than adhering to the order of runtime effects, a consequence of type
soundness.

8.1 Logical and Contextual Equivalence for the Monadic Normal Form 𝜆∗M
As the first step, we establish that we can restrict the logical relations development for the direct-
style 𝜆∗𝜀 (Section 7) to 𝜆∗M in MNF due to the results proved in Section 4. That is, MNF is a proper
sublanguage of 𝜆∗𝜀 and preserved by reductions (Lemmas 4.1 and 4.3). Therefore, MNF is also
preserved by the logical equivalence (Definition 7.3), and contextual equivalence (Definition 7.1).
Note that by restricting to monadic syntax, the contexts 𝐶 in Figure 12 can only be of the shape

𝐶 ::= □ | let 𝑥 = 𝐶 in 𝑔 | let 𝑥 = 𝜆𝑦.𝐶 in 𝑔 | let 𝑥 = 𝑏 in 𝐶

for which we can derive the specialized context typing rules (Figure 16). Finally, some equational
rules on expressions (e.g., (𝛽-inlining), Figure 15) require a translation into MNF first to fit into
the syntactic constraints of 𝜆∗M. This is always feasible due to the totality of the translation and its
type-and-effect preservation (Lemma 4.2).

Thus, without further ado, we will treat the development of Section 7 as being defined over 𝜆∗M.
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8.2 Context Typing, Synthesis and Erasure
In this section, we establish properties about contexts used for contextual equivalence in 𝜆∗G. We
essentially lift the dependency synthesis (Figure 9) to a notion of dependency synthesis for 𝜆∗M
contexts (Figure 16).

Definition 8.1 (Dependency Erasure). We write ⌜𝑔⌝ (⌜𝑏⌝), for the erasure of effect dependencies
from 𝜆∗G graph terms (bindings), yielding their unannotated version in 𝜆∗M (Section 4), as well as ⌜𝐶⌝
for erasing dependencies in 𝜆∗G contexts from Figure 17 into 𝜆∗M contexts from Figure 16.

Definition 8.2 (Context Dependency Synthesis). We write

Δ ⊢ 𝐶 : (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺) { C • Δ′

for context synthesis, obtained from lifting the dependency synthesis (Figure 9) to context typing
derivations (Figure 16).

Intuitively, the synthesis over contexts yields the annotated context with respect to the ambient
last-uses coeffect Δ, with Δ′ being the ambient last uses at the hole of the context. The functional
properties of dependency synthesis on 𝜆∗M terms (Section 6.4) carry over analogously to contexts:

Lemma 8.3 (Soundness of Context Dependency Synthesis). If

Δ ⊢ 𝐶 : (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺) { C • Δ′

then
C : (Γ′𝜑 ′ • Δ′;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 • Δ;𝑇 𝑞 𝜺)

Proof. By induction over the derivation Δ ⊢ 𝐶 : (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺) { C • Δ′. □

Lemma 8.4 (Context Dependency Synthesis is Total). If

𝐶 : (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺)
then for all Δ with dom(Δ) = dom(Γ) there is Δ′ with dom(Δ′) = dom(Γ′) and an annotated context
C where

Δ ⊢ 𝐶 : (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺) { C • Δ′

and ⌜C⌝ = 𝐶 .

Proof. By induction over the context typing derivation for 𝐶 . □

Lemma 8.5 (Context Re-Synthesis). If

𝐶 : (Γ′𝜑 ′ • Δ′;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 • Δ;𝑇 𝑞 𝜺)
then

Δ ⊢ ⌜𝐶⌝ : (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺) { 𝐶 • Δ′ .

Proof. By induction over the context typing derivation for 𝐶 . □

Lemma 8.6 (Decomposition). If Γ 𝜑 • Δ ⊢ 𝐶 [𝑔 ] : 𝑇 𝑞 𝜺, then Γ′𝜑
′ • Δ′ ⊢ 𝑔 : 𝑆 𝑝 𝜺′ and

𝐶 : (Γ′𝜑 ′ • Δ′; 𝑆 𝑝 𝜺′) ⇛ (Γ 𝜑 • Δ;𝑇 𝑞 𝜺) for some Γ′, 𝜑 ′, Δ′, 𝑆 , 𝑝 , and 𝜺′.

Proof. By induction over the context 𝐶 . □

Lemma 8.7 (Plugging). If Γ′𝜑
′ • Δ′ ⊢ 𝑔 : 𝑆 𝑝 𝜺′ and 𝐶 : (Γ′𝜑 ′ • Δ′; 𝑆 𝑝 𝜺′) ⇛ (Γ 𝜑 • Δ;𝑇 𝑞 𝜺),

then Γ 𝜑 • Δ ⊢ 𝐶 [𝑔 ] : 𝑇 𝑞 𝜺.

Proof. By induction over the context typing for 𝐶 . □
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𝐶 ::= □ | let 𝑥 = 𝐶 • 𝛿 in 𝑔 | let 𝑥 = (𝜆𝑦.𝐶 • 𝛿) • 𝛿 in 𝑔 | let 𝑥 = 𝑏 • 𝛿 in 𝐶

Context Typing Rules 𝐶 : (Γ 𝜑 • Δ;𝑇 𝑞 𝜺) ⇛ (Γ 𝜑 • Δ;𝑇 𝑞 𝜺)

Γ ⊢ 𝑆 𝑝 𝜺1 <: 𝑇 𝑞 𝜺2

□ : (Γ 𝜑 • Δ; 𝑆 𝑝 𝜺1) ⇛ (Γ 𝜑 • Δ;𝑇 𝑞 𝜺2)
(c-hole)

𝐶 : (Γ′𝜑 ′ • Δ′;𝑈 ′ 𝑟
′
𝜺1) ⇛ (Γ 𝜑 • Δ;𝑈 𝑟 𝜺2) (Γ, 𝑥 : 𝑈 𝑟∗∩𝜑∗)𝜑,𝑥 • Δ, (𝜺2∗, 𝑥) ↦→ 𝑥 ⊢ 𝑔 : 𝑇 𝑝 𝜺3

𝑥 ∉ fv(𝑇 ) 𝜃 = [𝑟/𝑥] 𝛿 ⊑ Δ|𝜺2∗
let 𝑥 = 𝐶 • 𝛿 in 𝑔 : (Γ′𝜑 ′ • Δ′;𝑈 ′ 𝑟

′
𝜺1) ⇛ (Γ 𝜑 • Δ; (𝑇 𝑝 𝜺2 ▷ 𝜺3)𝜃 )

(c-let-1)

𝐶 : (Γ′𝜑 ′ • Δ′;𝑈 ′ 𝑟
′
𝜺1) ⇛ ((Γ, 𝑦 : 𝑆 𝑝 ) 𝑞

′′,𝑦 • ↦→𝑦;𝑇 𝑞 𝜺2)
(Γ, 𝑥 : ((𝑦 : 𝑆 𝑝 ) →𝜺2 𝑇 𝑞) 𝑞′′∗∩𝜑∗)𝜑,𝑥 • Δ, (𝜺4∗, 𝑥 ↦→ 𝑥) ⊢ 𝑔 : 𝑈 𝑟 𝜺3
𝑥 ∉ fv(𝑈 ) 𝜃 = [𝑞′′/𝑥] 𝑞′′ ⊆ 𝜑 𝛿1 ⊑ 𝜺2∗ ↦→ 𝑦 𝛿2 ⊑ Δ|𝜺4∗

let 𝑥 = (𝜆𝑦.𝐶 • 𝛿1) • 𝛿2 in 𝑔 : (Γ′𝜑 ′ • Δ′;𝑈 ′ 𝑟
′
𝜺1) ⇛ (Γ 𝜑 • Δ; (𝑈 𝑟 𝜺3)𝜃 )

(c-let-𝜆)

Γ 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑟 𝜺1
𝐶 : (Γ′𝜑 ′ • Δ′;𝑈 ′ 𝑟

′
𝜺2) ⇛ ((Γ, 𝑥 : 𝑆 𝑟∗∩𝜑∗) 𝜑,𝑥 • Δ, (𝜺1∗, 𝑥) ↦→ 𝑥 ;𝑇 𝑝 𝜺3)
𝑥 ∉ fv(𝑇 ) 𝜃 = [𝑟/𝑥] 𝛿 ⊑ Δ|𝜺1∗

let 𝑥 = 𝑏 • 𝛿 in 𝐶 : (Γ′𝜑 ′ • Δ′;𝑈 ′ 𝑟
′
𝜺2) ⇛ (Γ 𝜑 • Δ; (𝑇 𝑝 𝜺1 ▷ 𝜺3)𝜃 )

(c-let-2)

Fig. 17. Context typing rules for the 𝜆∗G graph IR.

Lemma 8.8 (Synthesis Plugging). If

Δ ⊢ 𝐶 : (Γ′𝜑 ′ ;𝑇 ′𝑞′ 𝜺′) ⇛ (Γ 𝜑 ;𝑇 𝑞 𝜺) { C • Δ′

and
Γ 𝜑 • Δ′ ⊢ 𝑔 : 𝑇 ′𝑞

′
𝜺′ { g • Δ′ |𝜺′∗

then
Γ 𝜑 • Δ ⊢ 𝐶 [𝑔 ] : 𝑇 𝑞 𝜺 { C[ g ] • Δ|𝜺∗ .

Proof. By induction over the context 𝐶 . □

8.3 Logical and Contextual Equivalence for 𝜆∗G with Hard Dependencies
The key point is that we can resort to the metatheory of the direct-style type-and-effect system
𝜆∗𝜀 , because (1) MNF is a sublanguage of the direct-style language (Lemmas 4.2 and 4.3), and
(2) dependencies are entirely determined by assigned effects (Lemma 6.1). Furthermore, effect
dependencies have no operational meaning beyond asserting that they respect the observed call-
by-value evaluation order of effects (Corollary 6.8). Thus, from those results we can appeal to the
logical relation and contextual equivalence of 𝜆∗M (Section 8.1) by the erasure and re-synthesis of
dependencies to derive their counterparts for 𝜆∗G:

Definition 8.9 (Logical Equivalence for 𝜆∗G).
Γ 𝜑 |= ⌜𝑔1⌝ ≈log ⌜𝑔2⌝ : 𝑇 𝑞 𝜺 Γ 𝜑 • Δ ⊢ ⌜𝑔1⌝ : 𝑇 𝑞 𝜺 { 𝑔1 • Δ|𝜺∗ Γ 𝜑 • Δ ⊢ ⌜𝑔2⌝ : 𝑇 𝑞 𝜺 { 𝑔2 • Δ|𝜺∗

Γ 𝜑 • Δ |= 𝑔1 ≈log 𝑔2 : 𝑇 𝑞 𝜺

Definition 8.10 (Contextual Equivalence for 𝜆∗G).
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Γ 𝜑 |= ⌜𝑔1⌝ ≈ctx ⌜𝑔2⌝ : 𝑇 𝑞 𝜺 Γ 𝜑 • Δ ⊢ ⌜𝑔1⌝ : 𝑇 𝑞 𝜺 { 𝑔1 • Δ|𝜺∗ Γ 𝜑 • Δ ⊢ ⌜𝑔2⌝ : 𝑇 𝑞 𝜺 { 𝑔2 • Δ|𝜺∗
Γ 𝜑 • Δ |= 𝑔1 ≈ctx 𝑔2 : 𝑇 𝑞 𝜺

Intuitively, graph terms are logically/contextually equivalent iff their dependency-erased versions
in 𝜆∗M are logically/contextually equivalent, and we can recover the original terms by re-synthesizing
their dependencies. More precisely, they are in the image of the synthesis function with respect to
the last-use coeffect Δ and the effect 𝜺 (cf. the synthesis invariant Lemma 6.1).

8.3.1 Properties of Logical Relations.

Theorem 8.11 (Fundamental Property). If Γ 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺, then Γ 𝜑 • Δ |= 𝑔 ≈log 𝑔 : 𝑇 𝑞 𝜺.

Proof. Γ 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞 𝜺 implies Γ 𝜑 ⊢M ⌜𝑔⌝ : 𝑇 𝑞 𝜺 and by the fundamental Theorem 7.40,
it follows that Γ 𝜑 |= ⌜𝑔⌝ ≈log ⌜𝑔⌝ : 𝑇 𝑞 𝜺. Finally, by Lemma 6.3, we have that Γ 𝜑 • Δ ⊢ ⌜𝑔⌝ :
𝑇 𝑞 𝜺 { 𝑔 • Δ|𝜺∗. □

Lemma 8.12 (Congruency of Binary Logical Relations). The binary logical relation is closed
under well-typed program contexts, i.e., if Γ 𝜑 • Δ |= 𝑔1 ≈log 𝑔2 : 𝑇 𝑝 𝜺, and 𝐶 : (Γ 𝜑 • Δ;𝑇 𝑝 𝜺) ⇛
(Γ′𝜑 ′ • Δ′;𝑇 ′𝑝′ 𝜺′), then Γ′𝜑

′ • Δ′ |= 𝐶 [𝑔1] ≈log 𝐶 [𝑔2] : 𝑇 ′𝑝
′
𝜺′.

Proof. (1) By definition of logical equivalence for 𝜆∗G:
(a) Γ 𝜑 |= ⌜𝑔1⌝ ≈log ⌜𝑔2⌝ : 𝑇 𝑝 𝜺.
(b) Γ 𝜑 • Δ ⊢ ⌜𝑔1⌝ : 𝑇 𝑞 𝜺 { 𝑔1 • Δ|𝜺∗.
(c) Γ 𝜑 • Δ ⊢ ⌜𝑔2⌝ : 𝑇 𝑞 𝜺 { 𝑔2 • Δ|𝜺∗.

(2) By erasure: ⌜𝐶⌝ : (Γ 𝜑 ;𝑇 𝑝 𝜺) ⇛ (Γ′𝜑 ′ ;𝑇 ′𝑝′ 𝜺′).
(3) By the congruence Lemma 8.12, and (1), (2): Γ 𝜑 |= ⌜𝐶⌝[ ⌜𝑔1⌝ ] ≈log ⌜𝐶⌝[ ⌜𝑔2⌝ ] : 𝑇 𝑝 𝜺.
(4) (3) is equivalent to Γ 𝜑 |= ⌜𝐶 [𝑔2 ]⌝ ≈log ⌜𝐶 [𝑔2 ]⌝ : 𝑇 𝑝 𝜺.
(5) By assumption, (2), and re-synthesis Lemma 8.5:

Δ ⊢ ⌜𝐶⌝ : (Γ 𝜑 ;𝑇 𝑝 𝜺) ⇛ (Γ′𝜑 ′ ;𝑇 ′𝑝′ 𝜺′) { 𝐶 • Δ′ .

(6) By (1a), (1c), (5), and synthesis plugging Lemma 8.8:
(a) Γ 𝜑 • Δ ⊢ ⌜𝐶 [𝑔1 ]⌝ : 𝑇 𝑞 𝜺 { 𝐶 [𝑔1 ] • Δ|𝜺∗.
(b) Γ 𝜑 • Δ ⊢ ⌜𝐶 [𝑔2 ]⌝ : 𝑇 𝑞 𝜺 { 𝐶 [𝑔2 ] • Δ|𝜺∗.

(7) (4) and (6) prove the goal.
□

Theorem 8.13 (Soundness of Binary Logical Relations). The binary logical relation is sound
w.r.t. contextually equivalence, i.e., if Γ 𝜑 • Δ ⊢ 𝑔1 : 𝑇 𝑝 𝜺 and Γ 𝜑 • Δ ⊢ 𝑔2 : 𝑇 𝑝 𝜺, then Γ 𝜑 • Δ |=
𝑔1 ≈log 𝑔2 : 𝑇 𝑝 𝜺 implies Γ 𝜑 • Δ |= 𝑔1 ≈ctx 𝑔2 : 𝑇 𝑝 𝜺.

Proof. (1) By definition of logical equivalence for 𝜆∗G:
(a) Γ 𝜑 |= ⌜𝑔1⌝ ≈log ⌜𝑔2⌝ : 𝑇 𝑝 𝜺.
(b) Γ 𝜑 • Δ ⊢ ⌜𝑔1⌝ : 𝑇 𝑞 𝜺 { 𝑔1 • Δ|𝜺∗.
(c) Γ 𝜑 • Δ ⊢ ⌜𝑔2⌝ : 𝑇 𝑞 𝜺 { 𝑔2 • Δ|𝜺∗.

(2) By (1a), and soundness Theorem 7.43: Γ 𝜑 |= ⌜𝑔1⌝ ≈ctx ⌜𝑔2⌝ : 𝑇 𝑝 𝜺.
(3) The goal follows by (1b), (1c), (2), and the definition of contextual equivalence for 𝜆∗G .

□
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(dce)

Γ 𝜑 • Δ ⊢ 𝑏 : 𝑇 𝑞1
1 𝜺1

Γ 𝜑 • Δ ⊢ 𝑔 : 𝑇 𝑞2
2 𝜺2 𝑔 terminates 𝜺1 = ∅ or 𝜔 𝛿 ⊑ Δ|𝜺1∗
Γ 𝜑 • Δ |= let 𝑥 = 𝑏 • 𝛿 in 𝑔 ≈log 𝑔 : 𝑇 𝑞2

2 𝜺2

(comm)

Γ 𝜑 • Δ ⊢ 𝑏1 : 𝑇 𝑞1
1 𝜺1 Γ 𝜑 • Δ ⊢ 𝑏2 : 𝑇 𝑞2

2 𝜺2
[Γ , 𝑥 : 𝑇 𝑞1∗∩𝜑∗

1 , 𝑦 : 𝑇 𝑞2∗∩(𝜑,𝑥 )∗
2 ] 𝜑,𝑥,𝑦 • Δ, (𝜺1∗, 𝑥) ↦→ 𝑥, (𝜺2∗, 𝑦) ↦→ 𝑦 ⊢ 𝑔 : 𝑇 𝑞 𝜺3

𝜺1∗ ∩ 𝜺2∗ = ∅ 𝑥 ∉ fv(𝑇 ) 𝑦 ∉ fv(𝑇 ) 𝜃 = [𝑞2/𝑦] [𝑞1/𝑥]
𝛿1 ⊑ Δ|𝜺1∗ 𝛿2 ⊑ Δ|𝜺2∗

Γ 𝜑 • Δ |= let 𝑥 = 𝑏1 • 𝛿1 in let 𝑦 = 𝑏2 • 𝛿2 in 𝑔

≈log let 𝑦 = 𝑏2 • 𝛿2 in let 𝑥 = 𝑏1 • 𝛿1 in 𝑔 : (𝑇 𝑞 𝜺1 ▷ 𝜺2 ▷ 𝜺3)𝜃

(𝜆-hoist)

Γ 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑜
∅ [Γ , 𝑦 : 𝑇 𝑝 , 𝑧 : 𝑆 𝑜∗∩(𝜑,𝑧 )∗] 𝑞,𝑦,𝑧 • ↦→𝑦, 𝑧 ↦→ 𝑧 ⊢ 𝑔 : 𝑈 𝑟 𝜺
𝜃 = [𝑜/𝑧] 𝑦 ∉ fv(𝑈 ) 𝑧 ∉ fv(𝑈 )

Γ 𝜑 • Δ |= let 𝑥 = (𝜆𝑦.(let 𝑧 = 𝑏 • ∅ in 𝑔) • 𝛿1) • 𝛿2 in 𝑥

≈log let 𝑧 = 𝑏 • ∅ in let 𝑥 = (𝜆𝑦.𝑔 • 𝛿1) • 𝛿2 in 𝑥

: ((𝑦 : 𝑇 𝑝 ) →𝜺 𝑈 𝑟𝜃 )𝑞

(𝛽-inlining)

[Γ, 𝑥 : 𝑇 𝑝 ] 𝑞,𝑥 • ↦→𝑥 ⊢ 𝑔 : 𝑈 𝑟 𝜺
𝑞 ⊆ 𝜑 Γ 𝜑 • Δ ⊢ 𝑏 : 𝑇 𝑝

∅ 𝑥 ∉ fv(𝑈 ) 𝜃 = [𝑝/𝑥]
Γ 𝜑 • Δ |= let 𝑥 = (𝜆𝑦.𝑔 • 𝛿1) • 𝛿2 in let 𝑧 = 𝑏 • 𝛿2 in let𝑤 = 𝑦 𝑧 • 𝛿3 in𝑤

≈log let 𝑥 = (𝜆𝑦.𝑔 • 𝛿1) • 𝛿2 in let 𝑧 = 𝑏 • 𝛿2 in 𝑔[𝑥 { 𝛿3] [𝑧/𝑥] : (𝑈 𝑟 𝜺)𝜃

(e-cse)

Γ 𝜑 • Δ ⊢ 𝑏 : 𝑆 𝑝 𝜺1
[Γ , 𝑥 : 𝑆 𝑝∗∩𝜑∗, 𝑦 : 𝑆 𝑝∗∩(𝜑,𝑥 )∗] 𝜑,𝑥,𝑦 • Δ, (𝜺1∗, 𝑥) ↦→ 𝑥, (𝜺1∗, 𝑦) ↦→ 𝑦 ⊢ 𝑔 : 𝑇 𝑞 𝜺2

𝜔 ∉ 𝜺1 𝜃 = [𝑥/𝑦] 𝛿 ⊑ Δ|𝜺1∗
Γ 𝜑 • Δ |= (let 𝑥 = 𝑏 • 𝛿 in let 𝑦 = 𝑏 • 𝛿 in 𝑔) ≈log (let 𝑥 = 𝑏 • 𝛿 in 𝑔𝜃 ) : 𝑇 𝑞𝜃 𝜺1𝜃 ▷ 𝜺2

Fig. 18. Equational rules for the 𝜆∗G graph IR. We obtain the optimization rules by congruence closure
with the contexts from Figure 17.

8.4 Soundness of the Optimization Rules
From the above results about logical equivalence for the 𝜆∗G graph IR obtained by a “round-trip
translation” technique, we are now equipped to prove the soundness of the main paper’s optimiza-
tion rules based on the results of Section 7.9. The optimization rules are the congruence closure
(with respect to 𝐶 contexts in Figure 17) of the equations shown in Figure 18. Those are obtainable
mechanically from their counterparts in 𝜆∗𝜀 (Figure 15) by using the type-and-effect preserving
translation into MNF (Section 4.3) followed by dependency synthesis for a given map Δ of last uses
(Figure 9). That is, the equational rules in Figure 18 are the dependency-annotated versions of their
counterparts in MNF.

Theorem 8.14 (Compatibility of the Eqational Rules). Each rule in Figure 18 is compatible
with the logical equivalence.

Proof. Each individual rule (dce), (comm), (𝜆-hoist), (𝛽-inlining), and (e-cse) can be uniformly
proved as follows:
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(1) By dependency erasure, and by Lemma 4.3, we have that both graphs are equated by the
direct-style version of the respective rule (Figure 15).

(2) By Lemmas 7.44 to 7.46, 7.48 and 7.50, the erased graphs are logically equivalent in 𝜆∗𝜀 .
(3) By totality and soundness of synthesis (Lemmas 6.2 and 6.3), re-synthesizing the dependen-

cies under the given Δ and context Γ 𝜑 of the erased graphs yields the initial dependency-
annotated versions.

(4) By (2) and (3), both sides are logically equivalent in 𝜆∗G (Definition 8.9).
□

Corollary 8.15 (Compatibility of the Optimization Rules). The optimization rules for 𝜆∗G,
i.e., the congruence closure of the rules in Figure 18 is compatible in logical equivalence.

Proof. By Theorem 8.14 and the congruency Lemma 8.12. □

Corollary 8.16 (Soundness of the Optimization Rules). The optimization rules for 𝜆∗G, i.e.,
the congruence closure of the rules in Figure 18 describe contextually equivalent graphs.

Proof. By Corollary 8.15 and soundness Theorem 8.13. □

9 FROM GRAPHS BACK TO TREES
In this section, we discuss efficient algorithms and heuristics for code generation, which transform
the graph informed by 𝜆∗G into a tree with nested structures. This section follows the same structure
as in the main paper [Bračevac et al. 2023] but explains the algorithms with greater details: (1) we first
present the basic scheduling algorithm (Section 9.1) which incorporates dead code elimination; (2)
based on that, a lightweight frequency estimation heuristics (Section 9.2) introduces more flexible
code motion; (3) we finally present a compact scheduling algorithm (Section 9.3) for instruction
selection and inlining expressions. The optimizations are justified by the equational theory in
Section 8.4.

9.1 Traversal without Redundant Code
In essence, the block scheduling algorithm traverses a hierarchy of graph-represented blocks and
selects unscheduled nodes to move into tree-represented blocks (and emit code) based on the node’s
dependencies. Figure 19 shows the vanilla block scheduling algorithm, which operates over graph
IR data structures. We use Node to represent a graph node, and a few auxiliary functions such as
dataDeps/hardDeps to extract different kinds of dependencies of a Node.

At the beginning of scheduling, we have a scope of Nodes to schedule and a symbol representing
the final result of the top-level block. Transitively following the dependencies of the final result,
scheduleBlock partitions the unscheduled nodes into two groups: (1) nodes that are scheduled
in the current block, and (2) nodes that will be scheduled into other inner blocks. This process
is recursively applied when encountering lambda nodes in traverseNode. Schedule decisions are
made relying on two properties over nodes, available and reachable.

Nested Scopes. A node is available if all its dependent bound variables have been introduced
under the current path. A node is scheduled in the current block if it is both reachable and available
(Line 29); otherwise, it is moved to the inner scope (Line 33). To this end, we need to transtively
compute the bound variables depended by nodes, of which the result is reflected by boundDeps. In
Figure 19, path represents the set of the accumulated bound variables (e.g., introduced by lambdas)
up to the current block. Both path and scope need maintaining through the recursive calls to
properly handle scopes and nested blocks.
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1 /* auxiliary functions to access different sorts of dependencies of a node
2 boundDeps: dependencies that are bound variables
3 dataDeps, effDeps: data- and effect-dependencies
4 hardDeps (⊆ effDeps): hard effect-dependencies */

5 val boundDeps, dataDeps, effDeps, hardDeps : Node => Set[Node]
6 /* obtain estimated frequencies of data-/effect-dependencies of a node: */

7 val depFreq: Node => Map[Node, Double]
8
9 /* traverse a single node to emit a tree node */
10 def traverseNode(inner: Set[Node], path: Set[Node], n: Node): TreeNode = n match
11 case 𝜆f(x).r => // schedule nodes into a 𝜆 scope
12 TreeNode.Scope(𝜆f(x), scheduleBlock(inner, path ∪ {f, x}, r))
13 ...
14 case "$sym := $op($args)" => // schedule common nodes as leaves
15 TreeNode.Leaf(sym, Exp(op, args))
16
17 /* schedule a block given its final result, producing a scoping tree */
18 def scheduleBlock(scope: Set[Node], path: Set[Node], res: Node): List[TreeNode] =
19 val reachable: PriorityQueue[Node] = {res} // reachable nodes, topologically ordered

20 val reachableHard: Set[Node] = {res} // reachable & required by data/hard deps.

21 val reachableHot: Set[Node] = {res} // reachable & frequently executed
22 val current: List[Node] = ∅ // scheduled in current block
23 val inner: Set[Node] = ∅ // scheduled in inner blocks
24 def available(n: Node): Boolean = boundDeps(n) ⊆ path // available: bound vars. in deps. are ready
25
26 for n ← reachable do

27 if reachableHard(n) then // reachable via data/hard dependencies

28 if reachableHot(n) ∧ available(n) then // reachable via hot paths
29 current = n :: current

30 for m ← (dataDeps(n) ∪ effDeps(n)) ∩ scope do // consider deps. hot if freq > 0.5

31 if depFreq(n)[m] > 0.5 then reachableHot += {m}
32 else // only via cold path, or hot but unavailable
33 inner += {n}

34 if reachableHot(n) then // deps. of unavailable hot nodes are hot

35 reachableHot += (dataDeps(n) ∪ effDeps(n)) ∩ scope

36 reachableHard += (dataDeps(n) ∪ hardDeps(n)) ∩ scope // reach by data and only hard dependencies
37 reachable += (dataDeps(n) ∪ effDeps(n)) ∩ scope // reach by data/effect dependencies
38
39 for n ← current yield traverseNode(inner, path, n) // recursively build up the scoping tree

Fig. 19. The pseudocode of the basic scheduling algorithm with two extensions. Function scheduleBlock

decides which nodes are scheduled into the current scope and recursively schedules inner scopes. To
generate code for a graph g, we make the call scheduleBlock(g.nodes,∅, g.result). The extension to
eliminate dead code by soft dependencies (cf. Section 9.1) is marked in pink , and the extension for
frequency estimation and code motion (cf. Section 9.2) in teal .

Dead Code Elimination. A node is reachable if it can be back-tracked from the current result
node through effect or data dependencies. Only reachable nodes are considered for scheduling,
which naturally eliminates dead code (cf. rule dce, Figure 18). In Figure 19, reachable is a priority
queue which reflects the property and enforces the topological ordering. It is populated with data
and effect dependencies along the iteration (Line 37). As an extension, we discern soft dependencies
(Section 6) and identify data and hard dependencies as reachableHard (Line 36). This ensures nodes
that are only reachable via soft dependencies can be eliminated.

Complexity. Given the total number of nodes 𝑛 and the maximal depth of nested blocks 𝑘 , the
worst-case asymptotic time complexity is bound by𝑂 (𝑘𝑛2). This is because the algorithm traverses
over the reachable nodes in order (bound by 𝑛, 𝑂 (𝑛) each), and repeats this process for nested
scopes. In practice, the complexity is bound by 𝑂 (𝑘𝑛 log𝑛) given the decreasing size of nested
scopes and the limited degrees of graph nodes. To exemplify, scheduling of symbolic execution (cf.
[Bračevac et al. 2023], Section 7.2) takes 19.3 sec for 548,976 graph nodes, which is rather efficient.
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9.2 Code Motion by Frequency Estimation
Our basic scheduling algorithm eagerly schedules nodes to their outermost block, following the
equational rules (comm) and (𝜆-hoist) in Figure 18. This is a form of code motion for no extra
effort and generally desirable for functions and loops. For instance,
List(1, 2, 3, 4, 5).map(x => x * factorial(N))

Lifting the expensive factorial out of the lambda is beneficial and feasible since it does not
depend on the bound variable x. However, this does not always generate optimal code. Consider a
conditional expression that transforms an array of complex numbers only in the then-branch,
if (cnd) compNums.map(f) else compNums

Since compNums.map(f) has no dependency on cnd, this statement would be lifted to the outer scope
and always executed regardless of the condition, thus imposing unnecessary runtime overhead
when the else-branch is actually taken.

To avoid this situation, we can estimate how frequently a node is used and move less frequent
nodes (i.e., cold) into inner scopes. We assign a number to each node based on its dependents
which represents how relatively often the node is executed at runtime. The results of functions
and loops are assigned 100, indicating that they and their dependencies can be executed multiple
times (definitely hot). The results of conditional branches are assigned 0.5 (cold), assuming each
branch is taken with equal probability. All other nodes are assigned 1.0 (normal). Numbers above
are illustrative and context-insensitive. Alternative metrics are possible, while what we present
here is beneficial to many code patterns.
Figure 19 highlights in teal the changes to the basic scheduling algorithm to use frequency

estimation. Given a node ready to schedule in the current scope (Line 28-31), we use the function
depFreq to access the frequency estimation of its dependencies. Only those with frequencies greater
than 0.5 are considered hot-reachable, and thus can be included in current. Others are classified
to be cold, and are scheduled in inner blocks if all reaching dependencies are cold. Given a node
scheduled in inner blocks (Line 32-35), its dependencies are considered to have the same level of
warmth as the node itself, ensuring consistent code motion behavior for code with nested scopes.

The proposed heuristic works as expected in that it (1) lifts computation out of hot constructs
such as loops, and (2) sinks computation into cold constructs such as conditionals. Regarding nested
scopes, the heuristic prioritizes (1) over (2). Suppose there is a loop in the current scope and a
conditional inside that loop. For a node inside the conditional, the heuristic tends to lift it out to
the current scope, as the result is still used multiple times during the loop. On the other hand, if
there is a loop inside a conditional in the current scope, a node used in the loop is not lifted to the
current scope, but still subject to lifting up to the conditional scope to optimize the loop.

Our approach is simpler to implement andmore efficient compared tomore sophisticated analyses,
such as lazy code motion [Knoop et al. 1992], partial redundancy elimination [Kennedy et al. 1999],
or even whole-program dataflow analyses. The estimation heuristics associates a constant factor to
each node traversed. Therefore, it does not change the complexity of the basic scheduling algorithm.

9.3 Instruction Selection with Compact Traversal
The basic scheduling algorithm generates code that binds every intermediate expression using let.
The result, nevertheless, is not only verbose but also suboptimal, without using the target-specific
primitives. Consider the following tensor computation snippet,
val X = Matmul(A, B); val C = Add(C, X); C

The unique use of X in Add enables further transformation into destination-passing style using
generalized matrix multiplication GEMM, which updates C in-place by 𝐶 ← 𝛼𝐴𝐵 + 𝛽𝐶 . Thus, we can
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1 /* shouldInline is a mutable set of nodes that are (1) locally defined,
2 (2) locally used as value exactly once, and (3) have no inner use. */
3 val shouldInline: Set[Node] = { n ∈ localDef | currentValUse[n] == 1 ∧ innerValUse[n] == 0 }
4
5 /* seen is the set of processed nodes (cf. processNodeHere) */
6 val seen: Set[Node] = ∅
7
8 /* check if all successors of node n have been processed; exclude it if not. */
9 def checkInline(n: Node): Unit =
10 if shouldInline(n) ∧ ∀ s ∈ succ[n]. seen(s) then
11 processNodeHere(n)
12 else shouldInline -= {n}
13
14 /* considering node n, try to inline all its dependencies */
15 def processNodeHere(n: Node): Unit =
16 seen += {n}
17 for s ← dataDeps(n).reverse do // respects order of argument evaluation
18 checkInline(s)
19
20 /* traverse and emit a single node */

21 def traverseNode(inner: Set[Node], path: Set[Node], inlined: Set[Node], n: Node): TreeNode =
22 def traverseInlined(n: Node): Exp = n match
23 case "$sym := $op($args)" => // recursively handling inlined expressions

24 Exp(op, for m ← args yield if inlined(m) then traverseInlined(m) else m)
25 ...
26
27 n match
28 case 𝜆f(x).r => // schedule nodes into a 𝜆 scope
29 TreeNode.Scope(𝜆f(x), scheduleBlock(inner, path ∪ {f, x}, r))
30 ...
31 case "$sym := $op($args)" => // schedule common nodes as leaves

32 TreeNode.Leaf(sym, traverseInlined(n) )

Fig. 20. The auxiliary functions for the block scheduling algorithm with compact traversal. shouldInline,
seen, checkInline, and processNodeHere are defined within scheduleBlock in Figure 21, while traverseNode

replaces its former version in Figure 19. Usages of inlining information are marked in yellow .

match the tree structure Add(C, Matmul(A, B)) and generate a single operation, eliminating the
intermediate multiplication X:
GEMM(A, B, C, alpha=1.0, beta=1.0); C

This is basically a form of instruction selection seen in optimizing compilers. However, the procedure
can be non-trivial on computation graphs where all consumers of a value need accounting for.
A proper solution on graphs like LLVM’s SelectionDAG [Lattner and Adve 2004] takes effort to
compose and time to execute.

For the 𝜆∗G graph IR, we perform a simple but highly useful alternative called compact traversal:
we first turn the graph nodes into inlined trees whenever possible, and then use tree matching
algorithms (e.g., maximal munch) to select the best primitive. Compact traversal must respect the
dependencies to preserve the semantics. Consider the following code that reads the value from cell
x and then increments the value of x:

if (cond) { val y = !x; inc(x); println(y) }

Since inc(x) depends on node y in an effectful way, inlining y to println breaks the semantics.
Compact traversal works on each current scope determined by the basic scheduling algorithm

(cf. Figure 19). Initially, all nodes in the scope are viewed as individual trees. Figure 21 shows the
updated main function scheduleBlockwith compact traversal atop other extensions, and Figure 20
shows accompanying auxiliary definitions. In the following, we summarize the compact traversal
algorithm in three steps.

(1) Track Node Usage. The key idea of compact traversal is that we only consider inlining for
nodes that are locally defined and locally used exactly once, and are not used in nested scopes. To
this end, we first identify all candidate nodes for inlining by tracking node usage. When scheduling
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1 def scheduleBlock(scope: Set[Node], path: Set[Node], res: Node): List[TreeNode] =
2 ... // see Figure 19 for initial definitions
3
4 /* (1) a backward pass to track node usages, integrated with the basic scheduling algorithm */
5 val localDef: Set[Node] = ∅ // the collection of local definitions
6 val innerValUse: Map[Node, Int] = { ↦→ 0} // how often a symbol is used in inner blocks
7 val currentValUse: Map[Node, Int] = {res ↦→ 1, ↦→ 0} // how often a symbol is used in current block
8 for n ← reachable do

9 if reachableHard(n) then

10 if reachableHot(n) ∧ available(n) then
11 current = n :: current

12 localDef += {n} // record local definition

13 for m ← dataDeps(n) ∩ scope do // tracking node usage

14 if depFreq(n)[m] = 1.0 then currentValUse[m]++

15 else innerValUse[m]++

16 for m ← (dataDeps(n) ∪ effDeps(n)) ∩ scope do

17 if depFreq(n)[m] > 0.5 then reachableHot += {m}
18 else
19 inner += {n}

20 for m ← dataDeps(n) ∩ scope do // tracking node usage

21 innerValUse[m]++

22 if reachableHot(n) then

23 reachableHot += (dataDeps(n) ∪ effDeps(n)) ∩ scope

24 reachableHard += (dataDeps(n) ∪ hardDeps(n)) ∩ scope
25 reachable += (dataDeps(n) ∪ effDeps(n)) ∩ scope
26
27 /* (2) a forward pass to compute local successors */
28 val succ: Map[Node, Set[Node]] = { ↦→ ∅}
29 for c ← current do
30 for m ← (dataDeps(c) ∪ effDeps(c)) ∩ localDef do

31 succ[m] += {c}
32
33 /* (3) a backward pass to check if all successors are emitted after the point of inlining */
34 val shouldInline: Set[Node] = ... // see Figure 20 for definitions
35 def checkInline(n: Node): Unit = ...
36 def processNodeHere(n: Node): Unit = ...

37 checkInline(res) // inline the result node into "return" statement
38 for n ← current.reverse do // process all possible inline locations

39 if !shouldInline(n) then processNodeHere(n)
40
41 /* (finally) a forward pass to perform the acutal code emission */

42 for n ← current if !shouldInline(n) // emit each non-inlinable node

43 yield traverseNode(inner, path, shouldInline , n) // with inlining information (cf. Figure 20)

Fig. 21. The pseudocode of block scheduling algorithm with compact traversal. Changes for elimination
by soft dependencies are highlighted in pink , frequency estimation in teal , and compact traversal in
yellow . Auxiliary function definitions can be found in Figure 20.

code, we keep track of local definitions and their symbolic names (Line 12). We also track how
many times a locally defined node is used in the current scope and inner scopes as a proper value
(Line 13-15, 20-21), respectively.

(2) Compute Local Successors. After recording the node usage information in the first step,
we need to calculate local successors of a node in the current block (Line 28-31). A node x is a local
successor of node y if x and y are scheduled in the same block and x depends on y. The algorithm
uses a map to store the local successors of a locally defined node.

(3) Check Inlining. Lastly, the algorithm runs a backward pass for all nodes that can be inlined.
This pass checks if all successors of a node are emitted after the point considered for inlining
(Figure 20, Line 9-12). If not, we disable its inlining. Otherwise, we inline this node and check if
any other nodes used by this node can be further inlined (Figure 20, Line 15-18).
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A Flexible Framework for Optimization Opportunities. In Section 9 we have illustrated a
series of optimizations possible by simple and composable algorithms through scheduling graph IR
back to nested tree representations. Opportunities are not limited to the ones aforementioned. For
instance, the basic scheduling algorithm can introduce instruction scheduling by assigning a proper
priority value to each node reflecting not only dependency but also timing, thus tweaking the
behavior of the traversal. To conclude, graph IR can be an efficient and flexible system to generate
performant code.

ACKNOWLEDGMENTS
A large number of people have contributed to the design of the LMS graph IR over the years [Amin
and Rompf 2017; Brown et al. 2016, 2011; Essertel et al. 2018, 2021; George et al. 2014; Lee et al.
2011; Moldovan et al. 2019; Ofenbeck et al. 2017; Rompf 2012, 2016; Rompf et al. 2015; Rompf and
Odersky 2012; Rompf et al. 2013, 2011; Stojanov et al. 2019; Sujeeth et al. 2014, 2013; Tahboub et al.
2018; Wang et al. 2019a,b; Wei et al. 2023b], and in particular to the system of effect dependencies:
Nada Amin, Thaïs Baudon, Kevin J. Brown, James M. Decker, Grégory Essertel, Georg Ofenbeck,
Alen Stojanov, Arvind K. Sujeeth, Fei Wang, and Yushuo Xiao. This work was supported in part by
NSF awards 1553471, 1564207, 1918483, 1910216, DOE award DE-SC0018050, as well as gifts from
Meta, Google, Microsoft, and VMware.

REFERENCES
Amal Ahmed, Derek Dreyer, and Andreas Rossberg. 2009. State-dependent representation independence. In POPL. ACM,

340–353.
Amal Jamil Ahmed. 2004. Semantics of types for mutable state. Princeton University.
Nada Amin and Tiark Rompf. 2017. LMS-Verify: abstraction without regret for verified systems programming. In POPL.

ACM, 859–873.
Andrew W. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. ACM Trans. Program. Lang. Syst. 23, 5 (2001), 657–683.
Anindya Banerjee, David A. Naumann, and Stan Rosenberg. 2013. Local Reasoning for Global Invariants, Part I: Region

Logic. J. ACM 60, 3 (2013), 18:1–18:56.
Yuyan Bao, Gary T. Leavens, and Gidon Ernst. 2015. Conditional effects in fine-grained region logic. In FTfJP. ACM, 5:1–5:6.
Yuyan Bao, Gary T. Leavens, and Gidon Ernst. 2018. Unifying separation logic and region logic to allow interoperability.

Formal Aspects Comput. 30, 3-4 (2018), 381–441.
Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. 2021. Reachability types: tracking

aliasing and separation in higher-order functional programs. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–32.
Yuyan Bao, Guannan Wei, Oliver Bračevac, and Tiark Rompf. 2023. Modeling Reachability Types with Logical Relations:

Semantic Type Soundness, Termination, and Equational Theory. arXiv:2309.05885 [cs.PL]
Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2007. Relational semantics for effect-based program

transformations with dynamic allocation. In PPDP. ACM, 87–96.
Alexander Borgida, John Mylopoulos, and Raymond Reiter. 1995. On the Frame Problem in Procedure Specifications. IEEE

Trans. Software Eng. 21, 10 (1995), 785–798.
Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and Tiark Rompf. 2023. Graph IRs

for Impure Higher-Order Languages – Making Aggressive Optimizations Affordable with Precise Effect Dependencies.
Proc. ACM Program. Lang. 7, OOPSLA2 (2023), 236:1–236:30.

Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christopher De Sa, Christopher R. Aberger, and Kunle
Olukotun. 2016. Have abstraction and eat performance, too: optimized heterogeneous computing with parallel patterns.
In CGO. ACM, 194–205.

Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
2011. A Heterogeneous Parallel Framework for Domain-Specific Languages. In PACT. IEEE Computer Society, 89–100.

Grégory M. Essertel, Ruby Y. Tahboub, James M. Decker, Kevin J. Brown, Kunle Olukotun, and Tiark Rompf. 2018. Flare:
Optimizing Apache Spark with Native Compilation for Scale-Up Architectures and Medium-Size Data. In OSDI. USENIX
Association, 799–815.

Grégory M. Essertel, Ruby Y. Tahboub, and Tiark Rompf. 2021. On-stack replacement for program generators and source-to-
source compilers. In GPCE. ACM, 156–169.

https://arxiv.org/abs/2309.05885


60 Oliver Bračevac, Guannan Wei, Songlin Jia, Supun Abeysinghe, Yuxuan Jiang, Yuyan Bao, and Tiark Rompf

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The Essence of Compiling with Continuations. In
Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implementation (PLDI), Albuquerque,
New Mexico, USA, June 23-25, 1993, Robert Cartwright (Ed.). ACM, 237–247.

Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf, Kevin J. Brown, Arvind K. Sujeeth, Martin Odersky, Kunle
Olukotun, and Paolo Ienne. 2014. Hardware system synthesis from Domain-Specific Languages. In FPL. IEEE, 1–8.

Colin S. Gordon. 2021. Polymorphic Iterable Sequential Effect Systems. ACM Trans. Program. Lang. Syst. 43, 1 (2021),
4:1–4:79.

John Hatcliff and Olivier Danvy. 1994. A Generic Account of Continuation-Passing Styles. In POPL. ACM Press, 458–471.
Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and Fred Chow. 1999. Partial Redundancy Elimination in

SSA Form. ACM Trans. Program. Lang. Syst. 21, 3 (may 1999), 627–676.
Jens Knoop, Oliver Rüthing, and Bernhard Steffen. 1992. Lazy Code Motion. In Proceedings of the ACM SIGPLAN 1992

Conference on Programming Language Design and Implementation (San Francisco, California, USA) (PLDI ’92). Association
for Computing Machinery, New York, NY, USA, 224–234.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.
In 2nd IEEE / ACM International Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA. IEEE Computer Society, 75–88.

HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Hassan Chafi, Tiark Rompf, Martin Odersky, and Kunle Olukotun.
2011. Implementing Domain-Specific Languages for Heterogeneous Parallel Computing. IEEE Micro 31, 5 (2011), 42–53.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR (Dakar) (Lecture Notes
in Computer Science, Vol. 6355). Springer, 348–370.

Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee, Zachary Nado, D. Sculley, Tiark Rompf, and
Alexander B. Wiltschko. 2019. AutoGraph: Imperative-style Coding with Graph-based Performance. InMLSys. mlsys.org.

Georg Ofenbeck, Tiark Rompf, and Markus Püschel. 2017. Staging for generic programming in space and time. In GPCE.
ACM, 15–28.

Benjamin C. Pierce. 2004. Advanced Topics in Types and Programming Languages. The MIT Press.
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Computer Society,

55–74.
Tiark Rompf. 2012. Lightweight Modular Staging and Embedded Compilers - Abstraction without Regret for High-Level

High-Performance Programming. Ph.D. Dissertation. EPFL, Switzerland.
Tiark Rompf. 2016. Reflections on LMS: exploring front-end alternatives. In SCALA. ACM, 41–50.
Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Arvind K. Sujeeth, Manohar Jonnalagedda, Nada Amin, Georg Ofenbeck,

Alen Stojanov, Yannis Klonatos, Mohammad Dashti, Christoph Koch, Markus Püschel, and Kunle Olukotun. 2015. Go
Meta! A Case for Generative Programming and DSLs in Performance Critical Systems. In SNAPL (LIPIcs, Vol. 32). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 238–261.

Tiark Rompf and Martin Odersky. 2012. Lightweight modular staging: a pragmatic approach to runtime code generation
and compiled DSLs. Commun. ACM 55, 6 (2012), 121–130.

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda,
Kunle Olukotun, and Martin Odersky. 2013. Optimizing data structures in high-level programs: new directions for
extensible compilers based on staging. In POPL. ACM, 497–510.

Tiark Rompf, Arvind K. Sujeeth, HyoukJoong Lee, Kevin J. Brown, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
2011. Building-Blocks for Performance Oriented DSLs. In DSL (EPTCS, Vol. 66). 93–117.

Alen Stojanov, Tiark Rompf, and Markus Püschel. 2019. A stage-polymorphic IR for compiling MATLAB-style dynamic
tensor expressions. In GPCE. ACM, 34–47.

Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
2014. Delite: A Compiler Architecture for Performance-Oriented Embedded Domain-Specific Languages. ACM Trans.
Embed. Comput. Syst. 13, 4s (2014), 134:1–134:25.

Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Hassan Chafi, Victoria Popic, Michael Wu, Aleksandar
Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle Olukotun. 2013. Composition and Reuse with Compiled Domain-
Specific Languages. In ECOOP (Lecture Notes in Computer Science, Vol. 7920). Springer, 52–78.

Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect a Query Compiler, Revisited. In SIGMOD
Conference. ACM, 307–322.

Jacob Thamsborg and Lars Birkedal. 2011. A kripke logical relation for effect-based program transformations. In ICFP. ACM,
445–456.

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical Approach to Type Soundness. https:
//iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf.

FeiWang, Guoyang Chen,Weifeng Zhang, and Tiark Rompf. 2019a. Parallel Training via Computation Graph Transformation.
In IEEE BigData. IEEE, 3430–3439.

https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf
https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf


Graph IRs for Impure Higher-Order Languages (Technical Report) 61

Fei Wang, Daniel Zheng, James M. Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf. 2019b. Demystifying
differentiable programming: shift/reset the penultimate backpropagator. Proc. ACM Program. Lang. 3, ICFP (2019),
96:1–96:31.

Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. 2023a. Polymorphic Reachability Types: Tracking
Freshness, Aliasing, and Separation in Higher-Order Generic Programs. arXiv:2307.13844 [cs.PL]

Guannan Wei, Songlin Jia, Ruiqi Gao, Haotian Deng, Shangyin Tan, Oliver Bracevac, and Tiark Rompf. 2023b. Compiling
Parallel Symbolic Execution with Continuations. In ICSE. IEEE, 1316–1328.

https://arxiv.org/abs/2307.13844

	Abstract
	Contents
	List of Figures
	1 Introduction
	2 The Direct-Style *-Calculus
	2.1 Overview
	2.2 Examples
	2.3 Syntax
	2.4 Statics
	2.5 Dynamics
	2.6 Metatheory

	3 The Direct-Style *-Calculus with Store-Allocated Values
	3.1 Syntax
	3.2 Dynamics
	3.3 Metatheory

	4 Monadic Normal Form
	4.1 Syntax
	4.2 Reduction Preserves MNF
	4.3 Translation from Direct Style to MNF
	4.4 Soundness

	5 Monadic Normal Form with Hard Dependencies
	5.1 Dependencies
	5.2 Syntax and Statics
	5.3 Dynamics
	5.4 Metatheory

	6 Extension with Soft Dependencies
	6.1 Effects and Dependencies for Reads and Writes
	6.2 Hard-and-Soft Dependency Calculation
	6.3 Statics
	6.4 Metatheory

	7 Contextual Equivalence - The Direct-Style *-Calculus
	7.1 High-level Overview of the Proofs
	7.2 Contextual Equivalence
	7.3 The Model
	7.4 Interpretation of Reachability
	7.5 Binary Logical Relations for *
	7.6 Metatheory
	7.7 Compatibility Lemmas
	7.8 The Fundamental Theorem and Soundness
	7.9 Equational Rules

	8 Optimization Rules and Equational Theory of **Ga
	8.1 Logical and Contextual Equivalence for the Monadic Normal Form **Ma
	8.2 Context Typing, Synthesis and Erasure
	8.3 Logical and Contextual Equivalence for **Ga with Hard Dependencies
	8.4 Soundness of the Optimization Rules

	9 From Graphs Back to Trees
	9.1 Traversal without Redundant Code
	9.2 Code Motion by Frequency Estimation
	9.3 Instruction Selection with Compact Traversal

	Acknowledgments
	References

