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I am broadly interested in programming languages (PL), perhaps the most important tool for creating

software. As a PL researcher, my goal is to make lofty ideas crisp and firmly grounded, and unearth the

core concepts and abstractions of complex problem domains. The overarching theme of my research is
devising good building blocks for creating safe, efficient, extensible, and modular systems based on
principled PL approaches. I strive for foundational, mathematically solid tools and techniques that help

solve practical problems and yield safe and correct systems with tangible performance benefits. I want
develop new classes of high-level, typed functional programming languages that permit safe reasoning
about low-level aspects of computations in a developer-friendly way. In this spirit, I have been working

on the following projects:

• Reachability Types [3]: A novel type system for tracking aliasing, ownership, and low-level memory

properties in impure functional languages (e.g., Scala, OCaml) based on separation logic. Compared to

Rust’s type system, it demonstrably supports higher-order functions more seamlessly. It also supports

state-of-the-art lightweight polymorphism and programming with effects as capabilities.

• Seamless Stack Allocation [2]: Many programming languages (e.g., Swift, C♯, OCaml) are currently

advocating for forms of stack-allocated values. My research offers the first comprehensive and provably

sound solution based on a type system tracking modes of storage. Compared to other proposals, it

seamlessly supports stack-allocated data types of statically unknown size, including function closures.

• Easy and Efficient Symbolic Execution for Everyone [5, 4, 1]: A simple and high-level approach

for constructing high-performance symbolic execution compilers, based on generative programming

and functional programming techniques.

• Algebraic Effects & Handlers for Versatile Correlations [6, 7]: I designed a modular and extensible

framework for programming systems that correlate/join unbounded information flows. It is centered

around effect handlers [22] being the fundamental building blocks for programming correlations.

• Other Works: I have contributed to the theory and practice of incremental type checking [11, 9], foun-

dations of serverless computing [10], and mechanized possibilistic information flow security [8].

Reachability Types: Expressive Ownership-Style Reasoning for Higher-Order
Programs with (Co)Effects
Ownership-style type systems have seen increasing mainstream adoption, spearheaded by Rust. While

plenty of prior academic works in this space exists, they often do not allow full control over the finer

aspects of first-class, and higher-order functions/closures, the core primitives of functional programming

as in languages like Scala, OCaml, Racket, etc. Functions are often subject to severe restrictions by such

type systems, and (much to our surprise!) little previous research exists towards ownership across higher-
order functions. Reachability types [3] enable safe and idiomatic reasoning about memory properties of

functional programs with effects.

The design of reachability types is inspired by Reynold’s separation logic, which also serves a key role

in establishing the formal foundations for Rust’s type system (cf. RustBelt [17]). However, we expose

and explore separation all the way to the user-facing type level. The type system tracks aliased variables

in the surface types, and permits users to reason about their separation/overlap, which has many useful

applications, e.g., programming with capabilities having context-sensitive lifetime and sharing properties.
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The reachability type system has the property that it is implicitly polymorphic, because it is a dependently-

typed system. The value of implicit polymorphism has been recently recognized for effect systems (e.g.

Scala Capture Types [21]), and our work is no exception in this regard.

I am part of the core team behind reachability types, and have been leading the mechanization effort

of the system’s metatheory in Coq, including work under submission on extending the type theory [13]

and novel applications of the type system in optimizing compilers for impure functional programming

languages [12].

Seamless Stack Allocation
The call stack was first proposed by Dijkstra for the ALGOL language in the 1960s, and it was a break-

through that enabled programming with recursive functions. Since then, “the stack” with its simple and

yet very rigid automatic memory allocation/reclamation has been the backbone of most programming lan-

guage implementations. That the stack immediately “pops” when a function returns is taught in every CS

curriculum and unquestioningly accepted.

However, “what if we don’t pop the stack”? This is a simple question with profound consequences [2]:

if we let the stack frame live just a little longer than usual, we gain the ability to return data structures of

variable size entirely on the stack! We can run a much larger class of computations purely on the stack,

requiring no heap, no garbage collection (GC), and no manual memory management whatsoever. This is

beneficial for a wide range of applications, especially those which process short-lived ephemeral data, e.g.,

reactive and dataflow computations, differential programming, HTTP servers, etc.

Several languages (e.g., C♯, Swift, and OCaml) have recently proposed adding support for stack-allocated

values. Those proposals, while promising, have limitations, e.g., the size of stack-allocated data has to be

fully known at compile time, which limits expressiveness of on-stack computations and inhibits uses of

higher-order functions. In contrast, our approach is much more seamless and supports returning on-stack

data of statically unknown size, including anonymous function closures.

To ensure delayed stack allocation is safe, we also contribute an expressive type system tracking the

storage mode of expressions (i.e., heap and stack) and supporting forms of storage-mode polymorphic

code. We proved type-and-memory safety of our type system in Coq, and have implemented a prototype

compiler on top of Scala native. Our benchmarks show that the approach can reduce garbage collection

overhead by up to 54% and can improve wall-clock time by up to 22%.

Easy and Efficient Symbolic Execution for Everyone
Complementing the purely static typing approaches of reachability types and storage modes, I have also

been working on dynamic analyses, making symbolic execution easy, scalable, and performant using PL

principles and code generation techniques [5, 4].

Symbolic execution (SE) is a popular software-testing technique from the 1970s, e.g., used for bug find-

ing, security, verification, and program synthesis. The underlying idea is to simultaneously explore mul-

tiple execution paths in a given program, with some inputs being left symbolic rather than concrete, and

generating constraints checked by SMT solvers. However, building an SE engine is often considered “the

most difficult aspect of creating solver-aided tools”. Our work drastically reduces this hardship by a stream-

lined process which is both easy to grasp and performant. It reconciles the strengths of prevailing con-

struction approaches for SE without their downsides, i.e., those based on interpreters (high level, but slow)

and instrumentation of programs (performant, but ad hoc, language-specific, and hard to generalize).

Our framework relies heavily on concepts from functional programming, i.e., the interpreters return a

monadic representation of symbolic programs in terms of algebraic effects and handlers [22]. Effect han-

dlers grant extensibility (new object-language effects can be added), and customizability (effects can be

denoted differently on the fly). For instance, SMT solver interactions can be abstracted over with a dedi-

cated algebraic effect, and concrete handlers implement the communication between the solver (e.g., Z3)

and the SE engine. Exploring different execution paths is a nondeterminism effect, and concrete handlers
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implement user-defined search strategies and heuristics. To eliminate all abstraction and interpretation

overhead, we exploit an old discovery by Futamura [16] showing how a compiler can be mechanically

derived from an interpreter using partial evaluation/multi-stage programming.

We demonstrate our framework by symbolic execution of LLVM IR programs. Remarkably, the first

version [5] with a naive code generation backend already outperforms the interpreter-based KLEE [14] by

up to 2𝑥 . Since then, we have further improved performance by generating code for asynchronous path

exploration [4], followed by compiling truly parallel explorations [1]. We now achieve average speedups

of 4𝑥 over KLEE on real-world code bases (GNU Coreutils).

Algebraic Effects & Handlers for Versatile Correlations
As part of my dissertation research with Mira Mezini at TU Darmstadt, I have worked on PL support

for correlating notions of information flows [6, 7], akin to database joins, but over diverse data sources,

which may be unbounded, continuously and frequently change over time, and which are often concurrent,

asynchronous, and distributed. An example of such a query is “the current GPS position of all delivery

vehicles observed within a 20 mile radius of NYC over the last hour”. Correlations, are broadly useful, e.g.,

in data science, machine learning, real-time monitoring, modern user interfaces, truth maintenance.

I proposed a new perspective on correlations, called the “computational interpretation (CI)” [7]. It states

that correlations over 𝑛 data sources are cartesian product computations, but some “force” is influencing

how these computations unravel. The “force” here are computational effects manipulating and constrain-

ing the control flow of the computation, so that it does not materialize all the pairings a priori.
My CI bridges purely relational algebra perspectives on correlation and impure computational perspec-

tives, with effects being the mediator. Concerning programming abstractions for realizing the CI, I found

algebraic effect handlers [22] to be fitting, because they constitute modular and extensible snippets of deno-

tational semantics, and they are first-class representations of control flow, which can thus be manipulated

(the “force” acting on the computation).

Correlations can be uniformly programmed by effect handlers that interact with the generic cartesian

product, in a manner akin to coroutines. The modularity and extensibility for algebraic effects carries

over into the correlation setting, so that it is possible for programmers to define a custom vocabulary

of new interactions with the computation. Correlation features from different systems domains can be

cross-composed mix-and-match style, thus leading to a truly “à la carte”
1

correlation system.

My research at TU Darmstadt primarily focused on expressivity and high-level abstractions for cor-

relations. At Purdue, I have been strengthening my expertise in compilation, code generation, and type

systems for memory properties, in order to make correlations performant in future research.

Near-Term Vision
Reachability Types for Driving Compiler Optimizations Graph-based intermediate representations

(IRs) are widely used for powerful compiler optimizations, either interprocedurally in pure functional lan-

guages, or intraprocedurally in imperative languages. Yet so far, no suitable graph IR exists for aggres-

sive global optimizations in languages with both effects and higher-order functions (like Scala or OCaml):

aliasing and indirect control transfers make it difficult to maintain sufficiently granular dependency infor-

mation for optimizations to be effective. To close this long-standing gap, I proposed a novel typed graph IR

combining reachability types [3] with an expressive effect system to compute precise and granular effect

dependencies at an affordable cost while supporting local reasoning and separate compilation.

This IR is part of the next version of the Scala lightweight modular staging (LMS) compiler frame-

work [23]. A first part of this work is already under submission [12], with initial results showing dramatic

speedups (up to 21x) in functional machine learning DSLs.

1
In homage to Swierstra’s “Data types à la carte” [24].
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Easy and Efficient Symbolic Execution for Everyone and Everything A natural follow-up exten-

sion to our work on generating symbolic compilers [5, 4, 1], which so far has focused on “all-path symbolic

execution”, is demonstrating the applicability to other kinds of symbolic execution, e.g., concolic execution,

fuzzing, diverse verification tasks (like Saw [15]), and program synthesis (like Rosette [25]). I anticipate

that our generative approach (1) will effortlessly set new performance records for these applications, (2)

will set the standard on how to design, construct, and teach symbolic execution tools, (3) can be further

automated, leading to new high-level tools and meta-DSLs, and (4) will lead to new classes of domain-

specific optimizations that broadly apply to any kind of symbolic execution flavor and object language. To

further increase performance, I plan to investigate generating the SMT solver’s code itself and embedding

it into the symbolic execution engine, and make use of the above graph IR based on reachability types [12].

Long-Term Vision
Towards Functional Systems Programming with Reachability Types I want to extend high-level

typed impure functional languages (e.g., Scala, Swift, OCaml) with facilities that permit safe reasoning

about low-level aspects of computations in a way that is unobtrusive and retains the high level of abstrac-

tion. One use case is rich support for capability-oriented systems programming. Our reachability type

system [3] is well suited for this purpose, due to its support for higher-order functions front and center, its

lightweight tracking of aliasing, and its notion of separation. An important question is how our founda-

tional reachability system scales to a full language. A follow-up adding type polymorphism (generics) and

data types is already under submission [13], and more extensions (e.g., higher-kinded types) are planned.

These extensions will further require metatheoretical reasoning tools such as logical relations, a denota-

tional semantics, and equational theory for the type system. In this context, I also intend to scale the graph

IR work [12] to a full optimizing compiler for impure higher-order languages that rivals state-of-the-art

compilers like MLton [20].

New Classes of Safe, Fast, and Modular Correlation Systems Moving forward, I want to funda-

mentally change the landscape for correlation systems. I envision new classes of systems that are simul-

taneously (1) modular, extensible, and customizable, and (2) safe, fast, and scalable. My PhD work [6, 7]

has already laid the groundwork for (1), and I will tackle (2) with symbolic execution [5, 4, 1] and compiler

optimizations based on reachability types and staging [3, 13, 12].

An important next step is eliminating sources of abstraction overhead, in particular effect handlers. That

will lead to new fusion and deforestation techniques for effect handlers as well as staging-based optimiza-

tions thereof using Scala LMS. Sophisticated compiler optimizations for effect handlers (a fairly recent

development) are still largely underexplored by language implementations (e.g., multicore OCaml). Thus,

the outcomes of this research will also benefit the broader algebraic effects community, and contribute to

the theory and practice of continuations and coroutines, since handlers are close cousins of these concepts.

Using multi-stage programming is very likely to be effective, because correlations in my framework can

be clearly separated into stages of execution, and related works on stream processing (e.g., [19, 18]) have

greatly benefited from staging.

Certain correlations over asynchronous data source features negative constraints, e.g., an observation

should not occur within a certain amount of time of another. Such constraints involving the passage of time

and non-occurrences can be formulated in a way that is unsatisfiable, and make a continuously running

correlation stuck or unproductive. I intend to generalize the work on symbolic execution [5, 4, 1] to notions

of symbolic streams and dataflow for ensuring liveness of correlations even under negative constraints.

The key idea is to symbolically execute the constraints in declarative correlation pattern expressions and

check with SMT solvers whether there is a potential scenario in which such liveness properties can be

violated. Another application is using symbolic execution on declarative correlation patterns to generate

the underlying continuations and coordination logic of 𝑛-way asynchronous joins, by “simulating” the

correlation with symbolic observations.
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