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DIAMONDS AND RUST
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REACHABILITY TYPES


SEAMLESS OWNERSHIP FOR IMPURE 
FUNCTIONAL LANGUAGES



OWNERSHIP TYPE SYSTEMS
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The “Shared XOR Mutable” Principle in Rust



OWNERSHIP TYPE SYSTEMS

def counter(n: Int) = {


  val c = new Ref(n) 


  (() => c += 1, () => c -= 1) 


}


val (incr, decr) = counter(0)


incr(); incr(); decr() // 1

A Counter in { Scheme, ML, Scala,…} :

fn counter(n: i64)->(impl Fn()->(), impl Fn()->()) {


  let c  = Rc::new(Cell::new(n));


  let c1 = c.clone(); 


  let c2 = c.clone();


  (move || { c1.set(c1.get() + 1); },


   move || { c1.set(c2.get() - 1); }) 


}

Let’s Make One in Rust :
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Do Not Scale to Higher-Level Functional Languages!

Dynamic reference counting,


no static lifetime tracking! 



OWNERSHIP TYPE SYSTEMS
How Can We Make Them Scale?

Rust & State-of-the-Art Ownership Type Systems
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Strict foundation, 
selectively relaxed.


Borrowing: temporarily relax 
access where needed

Ownership: unique access 
paths, global heap invariant

Lets Flip it on its Head with

Reachability Types & Separation Logic!

Liberal foundation,

selectively restricted.


Uniqueness, separation: 
restrict access where needed

Sharing, reachability: flexible 
heap properties, no globally 

enforced invariants
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new Ref(42) : Ref[Int]∅

val x = new Ref(42) : Ref[Int]{x}

val y = x : Ref[Int]{x,y}

val i = 42 : Int⊥

Intuition: Reachability Types & Qualifiers 

q ∈ { ⊥ } ⊎ 𝒫𝖿𝗂𝗇(𝖵𝖺𝗋)

is untracked (often omitted).⊥

Computation t yields a T value which 
may reach all variables in q. 

A simply-typed lambda calculus (STLC) 
with qualifiers, mutable references, 
recursion, and subtyping. 

Γ ⊢ t : T q

means “fresh”, no sharing w. context.∅
val z = !y : Int⊥

x := 0 : Unit⊥

REACHABILITY IN THE      CALCULUSλ*



val c1 : Ref[Int]{c1}; val c2 : Ref[Int]{c2}

def addRef(c3 : Ref[Int]∅) = 

  c1 := !c1 + !c3; c1

// (Ref[Int]∅ => Ref[Int]{c1}){c1}

def addRef2(c3 : Ref[Int]{c1}) = 

  c1 := !c1 + !c3; c1

addRef(c2)  // ok

addRef(c1)  // type error 

addRef2(c1) // ok now 

FUNCTIONS
Qualifiers Track Free Variables
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// (Ref[Int]{c1} => Ref[Int]{c1}){c1}

addRef’s implementation 

must not share aliasing 

with its argument: ∅ ⊓ {c1} = ∅

addRef’s implementation 

reaches/closes over c1.

Intuition: Observable Separation
• Functions track their free variables, consistent with view as 

closure records. 


• To prevent interference from uncontrolled aliasing, functions 
are separated from their arguments


• If full separation is too strict, we may adjust the function 
domain’s qualifier for degrees of overlap.



{ val y = new Ref(42); () => !y }     : (() => Int){y} ~>   (() => Int)∅ 

<: f(() => Ref[Int]{f}){y} 

~> f(() => Ref[Int]{f})∅ 

{ val y = new Ref(42); () => y }      : (() => Ref[Int]{y}){y} ~>   what now?

ESCAPING CLOSURES
How Can We Track their Free Variables?
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Intuition: Function Self-Qualifiers
• Abstract over the free variables by letting a function type 

refer to itself. A concept borrowed from DOT/Scala!


• The self-qualifier’s presence indicates that some qualifier 
escapes (existential statement).


• Subtyping (<:) makes their use ergonomic, compared to 
existential types.

f(() => Ref[Int]{y}){y} 

Right:

Wrong: (() => Ref[Int]∅)∅ returns a fresh reference on each call!

{ () => new Ref(42) }                 : (() => Ref[Int]∅)∅ ~>   (() => Ref[Int]∅)∅

Type Assignment Inside vs. Outside of Lexical Scopes



val c1 = new Ref(0)


try { throw => 


  c1 += 1 


  if (error) throw(new Exception(“legal”))


  () => throw(new Exception(“illegal”) 


}

def try[A∅](block: (CanThrow∅ => A∅)∅): A∅
Non-Escaping Values [Osvald et al. 2016] Non-Interference

def par(a: (() => Unit)∅)(b: (() => Unit)∅): Unit

HIGHER-ORDER FUNCTIONS
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val c1 = new Ref(0); val c2 = new Ref(0)

par { c1 := !c1 + 1 } { c2 := !c2 + 2 }  
// ok, no overlap

par { c1 := !c1 + !c2 } { c2 := !c1 + !c2 }
// type error, overlapping

par { !c1 + !c2 } { !c1 + !c2 }      
// type error, overlapping, but safe (!)

• The base calculus supports effects as capabilities models and 
lightweight effect polymorphism [Brachthäuser et al. 2020]. 


• Reachability types alone do not capture linear consumption of 
capabilities, etc. This requires a proper effect system.

Return value cannot 

close over the capability.

Threads must have 

non-overlapping qualifiers

• Effect systems can help making more fine-grained distinctions.



LIGHTWEIGHT REACHABILITY POLYMORPHISM

Full details in the OOPSLA’21 paper!
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def inc(x : Ref[Int]∅) = { x := !x + 1; x } // : ((x : Ref[Int]∅) => Ref[Int]{x})⊥

val c : Ref[Int]{a,b,c}   ; val d : Ref[Int]{d}

inc(c) // : Ref[Int]{a,b,c}

inc(d) // : Ref[Int]{d}

inc(new Ref(0)) // : Ref[Int]∅

Lightweight Polymorphism (No Quantifiers!)

Dependent function type!



TYPE SOUNDNESS

∅ ∣ Σ ⊢ t1 : S q1 ∥ q1 ⊓ q2 ⊑ ∅

q′￼1 ⊓ q′￼2 ⊑ ∅

⟶ ∅ ∣ Σ ⊢ t2 : T q2

∅ ∣ Σ′￼⊢ t′￼1 : S q′￼1 ∅ ∣ Σ′￼⊢ t′￼2 : T q′￼2∥

⟶
Corollary: Preservation of Separation Preservation

∅ ∣ Σ ⊢ t : T q

∅ ∣ Σ′￼⊢ t′￼: T q⊕q′￼

∅ ∣ Σ ⊢ σ

∅ ∣ Σ′￼⊢ σ′￼

q′￼⊑ dom(Σ′￼)∖dom(Σ)Σ′￼⊇ Σ

t ∣ σ ⟶ t′￼∣ σ′￼If , , and ,

then  and

for some  and

Progress & Preservation [Wright & Felleisen ’94], Mechanized in Coq

• Information may increase due to fresh allocations.


• Cancelling union ensures that untracked terms 
remain untracked: 
⊥ ⊕ q = ⊥ α ⊕ q = α ⊔ q

• Interleaving two computations with separate 
answers keeps them separate.


• Reduction steps never introduce spurious 
aliasing/sharing between the two answers.
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• Limitation: References must be shallow. We will 
solve this next.
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REACHABILITY-AND-EFFECT SYSTEMS

• We get a lot of mileage just from reachability + overlap checking, at the 
price of prohibiting nested references of the form Ref[Ref[…]].


• Reachability sets permit very precise effect systems, at the granularity of 
variables, in both flow-insensitive and flow-sensitive flavors.


• All we need are flow-sensitive “kill” effects to recover nested references, 
consumption policies, move semantics, etc. 
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FLOW-INSENSITIVE EFFECTS

par { !c1 + !c2 }    { c4 := !c1 + !c2 + !c3 }        

Example: Finer-grained Non-Interference with Read/Write Effects

({c1,c2} : rd) ({c1,c2,c3} : rd, {c4} : wr)

⊔rd rd = rd

par { !c1 + !c2 }    { c1 := !c1 + !c2 + !c3 }        

({c1,c2} : rd) ({c2,c3} : rd, {c1} : wr)

⊔rd wr = wr ☠
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FLOW-SENSITIVE KILL EFFECTS
Enable Uniqueness, Linearity, Ownership Transfer & More 

Example: Use-Once Functions from Self-Killing

def fun(x) = { “Goodbye, cruel world!” }
// fun(Int =>({fun} : kill) String)∅

fun(0) // fun at most once

fun(1) // type error, no more fun!



RECOVERING NESTED REFERENCES
Move Semantics and Ownership Transfer via Kill Effects
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def f(x: Ref[Int]∅) = { val y = move(x); … }

val z = new Ref(1)

f(z) // z is killed by f and unusable

!z   // type error

// f((x:Ref[Int]∅) =>({x} : kill) T)q



Effect Quantale [Gordon 2021]:
(𝔼, ⊔ , ⊳ , I)

(𝔼, ⊔ ) is a partial join semi lattice,

(𝔼, ⊳ , I) is a partial monoid.

A structure where

and {(α, ϵ𝔼)}

Store-Sensitive Effect Quantale (New Here):

(𝔼, ⊔ , ⊳ , I)The lifting of a quantale

to a quantale over disjoint finite maps ,

assigning effects to reachability sets.

EFFECT QUANTALES

Example Effect Quantale:

⊥𝔼

𝗋𝖽
𝗐𝗋
𝗄𝗂𝗅𝗅

Flow 
insensitive

Flow 
sensitive

16



INTERIM CONCLUSION
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Seamless & scalable Rust-style systems can be achieved in impure 
higher-order languages!

Liberal foundation,

selectively restricted.


Uniqueness, separation: 
restrict access where needed

Sharing, reachability: flexible 
heap properties, no globally 

enforced invariants

All you need is a little shift in perspective:



II

POLYMORPHISM


AND

DATA TYPES
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def try[A∅](block: (CanThrow∅ => A∅)∅): A∅

🤔 Can we be polymorphic in qualifiers and types at the same time?



REACHABILITY POLYMORPHISM REVISITED
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def id(x: T∅): T{x} = x

val x: T{x,a,b} = …; val y: T{y,z} = …

id(x) // : T{x}[x ↦ {x,a,b}] = T{x,a,b}

id(y) // : T{x}[x ↦ {y,z}]   = T{y,z}



REACHABILITY POLYMORPHISM REVISITED
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def id(x: T∅): T{x} = x

val i: T⊥ = …

id(i) // : T{x}[x ↦ ⊥] = T∅😲

def id’(x: T⊥): T⊥ = x

id’(i) // : T⊥[x ↦ ⊥] = T⊥

{x}[x ↦ ⊥] = ⊥Suppose

def fakeid(x: T∅): T{x} = alloc()

No Reachability-Generic Code!
• Substitution with the non-track qualifier must yield a set.


• Otherwise, reachability tracking can be subverted.


• Reachability polymorphism is imprecise, requires code 
duplication for track/non-track => impractical!


fakeid(i) // : T{x}[x ↦ ⊥] = T⊥ 😱



A NEW REACHABILITY MODEL IN 
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λ♦

new Ref(42) : Ref[Int]{♦︎}

val x = new Ref(42) : Ref[Int]{x}

val y = x : Ref[Int]{y}

val i = 42 : Int∅

Intuition: Reachability Types & Qualifiers 

q ∈ 𝒫𝖿𝗂𝗇(𝖵𝖺𝗋 ⊎ {♦})

is untracked (often omitted).⊥

Computation t yields a T value which 
may reach all variables in q. 

Γ ⊢ t : T q

means “fresh”, no sharing w. context.∅

q ∈ { ⊥ } ⊎ 𝒫𝖿𝗂𝗇(𝖵𝖺𝗋)

is untracked (often omitted).∅

means “contextually fresh”, 

can grow with unobserved 

future locations at run time.

♦
val z = !y : Int∅

x := 0 : Unit∅



A NEW REACHABILITY MODEL IN 
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λ♦

σ|new Ref(42) : Ref[Int]{♦︎} σ,𝓁 = 42|𝓁 : Ref[Int]{𝓁}

where 𝓁 ∉ dom(σ) 

Contextual Freshness:



A NEW REACHABILITY MODEL IN 
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λ♦

id(x) // : T{x}[x ↦ {x,a,b}] = T{x,a,b}

id(y) // : T{x}[x ↦ {y,z}]   = T{y,z}

val x: T{x,a,b} = …; val y: T{y,z} = …; val i: T∅ = …

id(i) // : T{x}[x ↦ ∅]       = T∅ 😀

def fakeid(x: T{♦︎}): T{x} = alloc()

Type error:
alloc(): T{♦︎} <: T{x}

😀

def id(x: T{♦︎}): T{x} = x

def id(x: T∅): T{x} = x



EAGER VS. ON-DEMAND REACHABILITY
Typing Context in      vs.    
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x : T q ∈ Γ
Γ ⊢ x : T x

x : T q*,x ∈ Γ
Γ ⊢ x : T q*,x

λ* λ♦

val x = new Ref(42)  x:Ref[Int]{♦︎} x:Ref[Int]{x}

val y = x  y:Ref[Int]{x} y:Ref[Int]{y,x}

val z = x  z:Ref[Int]{x} z:Ref[Int]{z,x}

val w = z  w:Ref[Int]{z} w:Ref[Int]{w,z}



ON-DEMAND REACHABILITY
Reachability Chains
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 x:Ref[Int]{♦︎}

 y:Ref[Int]{x}

 z:Ref[Int]{x}

 w:Ref[Int]{z}

 {y} <: {x,y,z,w}

 {w,y} <: {z,x} <: {x}

 {w} <: {z} <: {x}

Examples:

 {x} <: {♦︎}

Qualifier Subtyping (Excerpt):

Γ ⊢ q <: r
Γ ⊢ p, q <: p, r

p ⊆ q ⊆ dom(Γ) ∪ {♦}
Γ ⊢ p <: q

x : T q ∈ Γ ♦ ∉ q
Γ ⊢ {x} <: q

Γ ⊢ p <: q Γ ⊢ q <: r
Γ ⊢ p <: r

 {x} <: {x,♦︎}



ON-DEMAND REACHABILITY
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More Precise Reachability Polymorphism

def foo(x: T{a,♦︎}): T{x} = a:=!a+1; x // (x: T{a,♦︎} => T{x}){a}

def foo(x: T{a}): T{a,x} = a:=!a+1; x // (x: T{a} => T{a,x}){a}

On-demand model preserves reachability

chains, giving us what we really want.

Eager model demands reflexive transitive 

reachability assignment. a’s only purpose

here is specifying legal overlap, but we 

can’t get rid of it! 



ON-DEMAND REACHABILITY
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When is Reflexive-Transitive Reachability Required?

val c1 = new Ref(0)


def f(x : Ref[Int]♦︎) = !c1 + !x


val c2 = c1


f(c2)

// : Ref[Int]{c1} ⊣ c1: Ref[Int]♦︎

// : (x: Ref[Int]♦︎ => Int){c1}

// : Ref[Int]{c2}

// : WRONG: {c1} ∩♦︎ {c2} = ♦︎, accept  

// : RIGHT: {c1}* ∩♦︎ {c2}* = {c1,♦︎} ≠ ♦︎, reject!

• When applying functions/type abstractions.


• When composing effects in the quantale framework.


Separation/Overlap Checks Must be Eager!



TYPE-AND-REACHABILITY ABSTRACTION
 Smoothly Scales to an      - Calculus, Yay!
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𝖥♦
<:λ♦

def try[A♦︎](block: (CanThrow♦︎ => A)♦︎): A

// try(∀Az <: Top♦︎.(CanThrow♦︎ => Az)♦︎ => Az)∅ Observable Separation for Universal Types
• Track free variables, consistent with view as closure 

records. 


• Just as function types, have self-qualifiers for scope 
transfers.


• To prevent interference from uncontrolled aliasing, type 
abstractions are separated from their arguments


• If full separation is too strict, we may adjust the universal 
type’s domain’s qualifier for degrees of overlap.

pair(∀Ax<:Top♦︎.∀By<:Top♦︎.((u:A{x},v:B{y}) => (A{u},B{v}){x,y})

Pair Constructor Signature (Strictly Disjoint Components)

pair(∀Ax<:Top♦︎.∀By<:Top{♦︎,x}.((u:A{x},v:B{y}) => (A{u},B{v}){x,y})

Version With Overlapping Reachability



DATA TYPES
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• Can build on standard System F encodings of data types 
modulo reachability sets. Cf., e.g.,


• Corrado Boehm and Alessandro Berarducci: 
Automatic Synthesis of Typed Lambda-Programs on 
Term Algebras. Theoretical Computer Science, 1985


• https://okmij.org/ftp/tagless-final/course/Boehm-
Berarducci.html 


• https://homepages.inf.ed.ac.uk/wadler/papers/free-
rectypes/free-rectypes.txt 

Encoding Data Types

try { throw => 


  p { (a, b) => 


    if (a == 0) throw(“error”)


    file.write(a);


    file.write(b)


}}

p { (a, b) => 


  file.write(a);


  file.write(b)


}

Implicit Capability-Polymorphic Elimination!



DATA TYPES
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Revisiting the Counter Example



REACHABILITY TYPES
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Part I: Foundations Part II: Applications

Core Reachability Types 
Type soundness, preservation of 

separation

Th
ru

st
 0

Th
ru

st
 1

Th
ru

st
 2

Th
ru

st
 3

Th
ru

st
 4 Compiler optimizations & IR


 Correctness of optimizations

Real-world integrations 
Scala, OCaml, Swift


Programming patterns 
e.g. borrowing, capabilities, etc.

Education: 
curriculum development for PL and compiler courses, as well as lower-division programming 

classesCompiler optimizations 
Integration with LMS compiler

Education 
PL and compiler courses

Performance case studies: 
e.g., tensor + SQL workloads in 

a general purpose language

Th
ru

st
 5

Th
ru

st
 6

Th
ru

st
 7

Th
ru

st
 8

Th
ru

st
 9

F≤-style Type Polymorphism

Type soundness of extended 

calculus

Log. rel. & equational theory 
Logical relations and 
equational reasoning

Effects & flow-sensitivity 
Effects modulo reachability, 

typestate (gen/use/kill effects)

Research Roadmap, Artifacts @ https://github.com/TiarkRompf/reachability

● Aim: Provide end-to-end mechanized Coq 
proofs for Thrusts 0-4!

● Core system (Thrust 0, 6): OOPSLA 2021

● Generics and data types (Thrust 1, 6): 
Mechanization completed, Under submission.

● Compiler IR (Thrust 3, 4, 7, 8): Prototype in 
progress. Under submission.

https://github.com/TiarkRompf/reachability
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“We both know what memories can bring


They bring diamonds and rust”


— Joan Baez (1975)
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REACHABILITY IMPLIES ALIASING
(But Not Vice Versa!)
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val x = new Ref(42) : Ref[Int]{x}

val y = x : Ref[Int]{x,y}

val z = y : Ref[Int]{x,y,z}

val w = x : Ref[Int]{x,w}

• Reachability sets in context are immutable once 
introduced!


• Cheaper to compute and maintain than full aliasing.


• Reachability is sufficient to check if two expressions 
share aliasing, e.g.,


• Qualifiers of y and w overlap.


• Qualifiers of u and x are disjoint.


• Reachability + separation is sufficient to model 
most uses of Rust-like systems!val v = (() => x)() : Ref[Int]{v,x}

val u = new Ref(42) : Ref[Int]{u}


