
Oliver Bračevac

PurPL Seminar
10-02-2023

DIAMONDS AND RUST

I

REACHABILITY TYPES

SEAMLESS OWNERSHIP FOR IMPURE
FUNCTIONAL LANGUAGES

OWNERSHIP TYPE SYSTEMS

3

The “Shared XOR Mutable” Principle in Rust

OWNERSHIP TYPE SYSTEMS

def counter(n: Int) = {

 val c = new Ref(n)

 (() => c += 1, () => c -= 1)

}

val (incr, decr) = counter(0)

incr(); incr(); decr() // 1

A Counter in { Scheme, ML, Scala,…} :

fn counter(n: i64)->(impl Fn()->(), impl Fn()->()) {

 let c = Rc::new(Cell::new(n));

 let c1 = c.clone();

 let c2 = c.clone();

 (move || { c1.set(c1.get() + 1); },

 move || { c1.set(c2.get() - 1); })

}

Let’s Make One in Rust :

4

Do Not Scale to Higher-Level Functional Languages!

Dynamic reference counting,

no static lifetime tracking!

OWNERSHIP TYPE SYSTEMS
How Can We Make Them Scale?

Rust & State-of-the-Art Ownership Type Systems

5

Strict foundation, 
selectively relaxed.

Borrowing: temporarily relax
access where needed

Ownership: unique access
paths, global heap invariant

Lets Flip it on its Head with

Reachability Types & Separation Logic!

Liberal foundation,

selectively restricted.

Uniqueness, separation:
restrict access where needed

Sharing, reachability: flexible
heap properties, no globally

enforced invariants

6

new Ref(42) : Ref[Int]∅

val x = new Ref(42) : Ref[Int]{x}

val y = x : Ref[Int]{x,y}

val i = 42 : Int⊥

Intuition: Reachability Types & Qualifiers

q ∈ { ⊥ } ⊎ 𝒫𝖿𝗂𝗇(𝖵𝖺𝗋)

is untracked (often omitted).⊥

Computation t yields a T value which
may reach all variables in q.

A simply-typed lambda calculus (STLC)
with qualifiers, mutable references,
recursion, and subtyping.

Γ ⊢ t : T q

means “fresh”, no sharing w. context.∅
val z = !y : Int⊥

x := 0 : Unit⊥

REACHABILITY IN THE CALCULUSλ*

val c1 : Ref[Int]{c1}; val c2 : Ref[Int]{c2}

def addRef(c3 : Ref[Int]∅) =

 c1 := !c1 + !c3; c1

// (Ref[Int]∅ => Ref[Int]{c1}){c1}

def addRef2(c3 : Ref[Int]{c1}) =

 c1 := !c1 + !c3; c1

addRef(c2) // ok

addRef(c1) // type error

addRef2(c1) // ok now

FUNCTIONS
Qualifiers Track Free Variables

7

// (Ref[Int]{c1} => Ref[Int]{c1}){c1}

addRef’s implementation

must not share aliasing

with its argument: ∅ ⊓ {c1} = ∅

addRef’s implementation

reaches/closes over c1.

Intuition: Observable Separation
• Functions track their free variables, consistent with view as

closure records.

• To prevent interference from uncontrolled aliasing, functions
are separated from their arguments

• If full separation is too strict, we may adjust the function
domain’s qualifier for degrees of overlap.

{ val y = new Ref(42); () => !y } : (() => Int){y} ~> (() => Int)∅

<: f(() => Ref[Int]{f}){y}

~> f(() => Ref[Int]{f})∅

{ val y = new Ref(42); () => y } : (() => Ref[Int]{y}){y} ~> what now?

ESCAPING CLOSURES
How Can We Track their Free Variables?

8

Intuition: Function Self-Qualifiers
• Abstract over the free variables by letting a function type

refer to itself. A concept borrowed from DOT/Scala!

• The self-qualifier’s presence indicates that some qualifier
escapes (existential statement).

• Subtyping (<:) makes their use ergonomic, compared to
existential types.

f(() => Ref[Int]{y}){y}

Right:

Wrong: (() => Ref[Int]∅)∅ returns a fresh reference on each call!

{ () => new Ref(42) } : (() => Ref[Int]∅)∅ ~> (() => Ref[Int]∅)∅

Type Assignment Inside vs. Outside of Lexical Scopes

val c1 = new Ref(0)

try { throw =>

 c1 += 1

 if (error) throw(new Exception(“legal”))

 () => throw(new Exception(“illegal”)

}

def try[A∅](block: (CanThrow∅ => A∅)∅): A∅
Non-Escaping Values [Osvald et al. 2016] Non-Interference

def par(a: (() => Unit)∅)(b: (() => Unit)∅): Unit

HIGHER-ORDER FUNCTIONS

9

val c1 = new Ref(0); val c2 = new Ref(0)

par { c1 := !c1 + 1 } { c2 := !c2 + 2 }
// ok, no overlap

par { c1 := !c1 + !c2 } { c2 := !c1 + !c2 }
// type error, overlapping

par { !c1 + !c2 } { !c1 + !c2 }
// type error, overlapping, but safe (!)

• The base calculus supports effects as capabilities models and
lightweight effect polymorphism [Brachthäuser et al. 2020].

• Reachability types alone do not capture linear consumption of
capabilities, etc. This requires a proper effect system.

Return value cannot

close over the capability.

Threads must have

non-overlapping qualifiers

• Effect systems can help making more fine-grained distinctions.

LIGHTWEIGHT REACHABILITY POLYMORPHISM

Full details in the OOPSLA’21 paper!

10

def inc(x : Ref[Int]∅) = { x := !x + 1; x } // : ((x : Ref[Int]∅) => Ref[Int]{x})⊥

val c : Ref[Int]{a,b,c} ; val d : Ref[Int]{d}

inc(c) // : Ref[Int]{a,b,c}

inc(d) // : Ref[Int]{d}

inc(new Ref(0)) // : Ref[Int]∅

Lightweight Polymorphism (No Quantifiers!)

Dependent function type!

TYPE SOUNDNESS

∅ ∣ Σ ⊢ t1 : S q1 ∥ q1 ⊓ q2 ⊑ ∅

q′￼1 ⊓ q′￼2 ⊑ ∅

⟶ ∅ ∣ Σ ⊢ t2 : T q2

∅ ∣ Σ′￼⊢ t′￼1 : S q′￼1 ∅ ∣ Σ′￼⊢ t′￼2 : T q′￼2∥

⟶
Corollary: Preservation of Separation Preservation

∅ ∣ Σ ⊢ t : T q

∅ ∣ Σ′￼⊢ t′￼: T q⊕q′￼

∅ ∣ Σ ⊢ σ

∅ ∣ Σ′￼⊢ σ′￼

q′￼⊑ dom(Σ′￼)∖dom(Σ)Σ′￼⊇ Σ

t ∣ σ ⟶ t′￼∣ σ′￼If , , and ,

then and

for some and

Progress & Preservation [Wright & Felleisen ’94], Mechanized in Coq

• Information may increase due to fresh allocations.

• Cancelling union ensures that untracked terms
remain untracked:
⊥ ⊕ q = ⊥ α ⊕ q = α ⊔ q

• Interleaving two computations with separate
answers keeps them separate.

• Reduction steps never introduce spurious
aliasing/sharing between the two answers.

11

• Limitation: References must be shallow. We will
solve this next.

12

REACHABILITY-AND-EFFECT SYSTEMS

• We get a lot of mileage just from reachability + overlap checking, at the
price of prohibiting nested references of the form Ref[Ref[…]].

• Reachability sets permit very precise effect systems, at the granularity of
variables, in both flow-insensitive and flow-sensitive flavors.

• All we need are flow-sensitive “kill” effects to recover nested references,
consumption policies, move semantics, etc.

13

FLOW-INSENSITIVE EFFECTS

par { !c1 + !c2 } { c4 := !c1 + !c2 + !c3 }

Example: Finer-grained Non-Interference with Read/Write Effects

({c1,c2} : rd) ({c1,c2,c3} : rd, {c4} : wr)

⊔rd rd = rd

par { !c1 + !c2 } { c1 := !c1 + !c2 + !c3 }

({c1,c2} : rd) ({c2,c3} : rd, {c1} : wr)

⊔rd wr = wr ☠

14

FLOW-SENSITIVE KILL EFFECTS
Enable Uniqueness, Linearity, Ownership Transfer & More

Example: Use-Once Functions from Self-Killing

def fun(x) = { “Goodbye, cruel world!” }
// fun(Int =>({fun} : kill) String)∅

fun(0) // fun at most once

fun(1) // type error, no more fun!

RECOVERING NESTED REFERENCES
Move Semantics and Ownership Transfer via Kill Effects

15

def f(x: Ref[Int]∅) = { val y = move(x); … }

val z = new Ref(1)

f(z) // z is killed by f and unusable

!z // type error

// f((x:Ref[Int]∅) =>({x} : kill) T)q

Effect Quantale [Gordon 2021]:
(𝔼, ⊔ , ⊳ , I)

(𝔼, ⊔) is a partial join semi lattice,

(𝔼, ⊳ , I) is a partial monoid.

A structure where

and {(α, ϵ𝔼)}

Store-Sensitive Effect Quantale (New Here):

(𝔼, ⊔ , ⊳ , I)The lifting of a quantale

to a quantale over disjoint finite maps ,

assigning effects to reachability sets.

EFFECT QUANTALES

Example Effect Quantale:

⊥𝔼

𝗋𝖽
𝗐𝗋
𝗄𝗂𝗅𝗅

Flow
insensitive

Flow
sensitive

16

INTERIM CONCLUSION

17

Seamless & scalable Rust-style systems can be achieved in impure
higher-order languages!

Liberal foundation,

selectively restricted.

Uniqueness, separation:
restrict access where needed

Sharing, reachability: flexible
heap properties, no globally

enforced invariants

All you need is a little shift in perspective:

II

POLYMORPHISM

AND

DATA TYPES

19

def try[A∅](block: (CanThrow∅ => A∅)∅): A∅

🤔 Can we be polymorphic in qualifiers and types at the same time?

REACHABILITY POLYMORPHISM REVISITED

20

def id(x: T∅): T{x} = x

val x: T{x,a,b} = …; val y: T{y,z} = …

id(x) // : T{x}[x ↦ {x,a,b}] = T{x,a,b}

id(y) // : T{x}[x ↦ {y,z}] = T{y,z}

REACHABILITY POLYMORPHISM REVISITED

21

def id(x: T∅): T{x} = x

val i: T⊥ = …

id(i) // : T{x}[x ↦ ⊥] = T∅😲

def id’(x: T⊥): T⊥ = x

id’(i) // : T⊥[x ↦ ⊥] = T⊥

{x}[x ↦ ⊥] = ⊥Suppose

def fakeid(x: T∅): T{x} = alloc()

No Reachability-Generic Code!
• Substitution with the non-track qualifier must yield a set.

• Otherwise, reachability tracking can be subverted.

• Reachability polymorphism is imprecise, requires code
duplication for track/non-track => impractical!

fakeid(i) // : T{x}[x ↦ ⊥] = T⊥ 😱

A NEW REACHABILITY MODEL IN

22

λ♦

new Ref(42) : Ref[Int]{♦︎}

val x = new Ref(42) : Ref[Int]{x}

val y = x : Ref[Int]{y}

val i = 42 : Int∅

Intuition: Reachability Types & Qualifiers

q ∈ 𝒫𝖿𝗂𝗇(𝖵𝖺𝗋 ⊎ {♦})

is untracked (often omitted).⊥

Computation t yields a T value which
may reach all variables in q.

Γ ⊢ t : T q

means “fresh”, no sharing w. context.∅

q ∈ { ⊥ } ⊎ 𝒫𝖿𝗂𝗇(𝖵𝖺𝗋)

is untracked (often omitted).∅

means “contextually fresh”,

can grow with unobserved

future locations at run time.

♦
val z = !y : Int∅

x := 0 : Unit∅

A NEW REACHABILITY MODEL IN

23

λ♦

σ|new Ref(42) : Ref[Int]{♦︎} σ,𝓁 = 42|𝓁 : Ref[Int]{𝓁}

where 𝓁 ∉ dom(σ)

Contextual Freshness:

A NEW REACHABILITY MODEL IN

24

λ♦

id(x) // : T{x}[x ↦ {x,a,b}] = T{x,a,b}

id(y) // : T{x}[x ↦ {y,z}] = T{y,z}

val x: T{x,a,b} = …; val y: T{y,z} = …; val i: T∅ = …

id(i) // : T{x}[x ↦ ∅] = T∅ 😀

def fakeid(x: T{♦︎}): T{x} = alloc()

Type error:
alloc(): T{♦︎} <: T{x}

😀

def id(x: T{♦︎}): T{x} = x

def id(x: T∅): T{x} = x

EAGER VS. ON-DEMAND REACHABILITY
Typing Context in vs.

25

x : T q ∈ Γ
Γ ⊢ x : T x

x : T q*,x ∈ Γ
Γ ⊢ x : T q*,x

λ* λ♦

val x = new Ref(42) x:Ref[Int]{♦︎} x:Ref[Int]{x}

val y = x y:Ref[Int]{x} y:Ref[Int]{y,x}

val z = x z:Ref[Int]{x} z:Ref[Int]{z,x}

val w = z w:Ref[Int]{z} w:Ref[Int]{w,z}

ON-DEMAND REACHABILITY
Reachability Chains

26

 x:Ref[Int]{♦︎}

 y:Ref[Int]{x}

 z:Ref[Int]{x}

 w:Ref[Int]{z}

 {y} <: {x,y,z,w}

 {w,y} <: {z,x} <: {x}

 {w} <: {z} <: {x}

Examples:

 {x} <: {♦︎}

Qualifier Subtyping (Excerpt):

Γ ⊢ q <: r
Γ ⊢ p, q <: p, r

p ⊆ q ⊆ dom(Γ) ∪ {♦}
Γ ⊢ p <: q

x : T q ∈ Γ ♦ ∉ q
Γ ⊢ {x} <: q

Γ ⊢ p <: q Γ ⊢ q <: r
Γ ⊢ p <: r

 {x} <: {x,♦︎}

ON-DEMAND REACHABILITY

27

More Precise Reachability Polymorphism

def foo(x: T{a,♦︎}): T{x} = a:=!a+1; x // (x: T{a,♦︎} => T{x}){a}

def foo(x: T{a}): T{a,x} = a:=!a+1; x // (x: T{a} => T{a,x}){a}

On-demand model preserves reachability

chains, giving us what we really want.

Eager model demands reflexive transitive

reachability assignment. a’s only purpose

here is specifying legal overlap, but we

can’t get rid of it!

ON-DEMAND REACHABILITY

28

When is Reflexive-Transitive Reachability Required?

val c1 = new Ref(0)

def f(x : Ref[Int]♦︎) = !c1 + !x

val c2 = c1

f(c2)

// : Ref[Int]{c1} ⊣ c1: Ref[Int]♦︎

// : (x: Ref[Int]♦︎ => Int){c1}

// : Ref[Int]{c2}

// : WRONG: {c1} ∩♦︎ {c2} = ♦︎, accept

// : RIGHT: {c1}* ∩♦︎ {c2}* = {c1,♦︎} ≠ ♦︎, reject!

• When applying functions/type abstractions.

• When composing effects in the quantale framework.

Separation/Overlap Checks Must be Eager!

TYPE-AND-REACHABILITY ABSTRACTION
 Smoothly Scales to an - Calculus, Yay!

29

𝖥♦
<:λ♦

def try[A♦︎](block: (CanThrow♦︎ => A)♦︎): A

// try(∀Az <: Top♦︎.(CanThrow♦︎ => Az)♦︎ => Az)∅ Observable Separation for Universal Types
• Track free variables, consistent with view as closure

records.

• Just as function types, have self-qualifiers for scope
transfers.

• To prevent interference from uncontrolled aliasing, type
abstractions are separated from their arguments

• If full separation is too strict, we may adjust the universal
type’s domain’s qualifier for degrees of overlap.

pair(∀Ax<:Top♦︎.∀By<:Top♦︎.((u:A{x},v:B{y}) => (A{u},B{v}){x,y})

Pair Constructor Signature (Strictly Disjoint Components)

pair(∀Ax<:Top♦︎.∀By<:Top{♦︎,x}.((u:A{x},v:B{y}) => (A{u},B{v}){x,y})

Version With Overlapping Reachability

DATA TYPES

30

• Can build on standard System F encodings of data types
modulo reachability sets. Cf., e.g.,

• Corrado Boehm and Alessandro Berarducci:
Automatic Synthesis of Typed Lambda-Programs on
Term Algebras. Theoretical Computer Science, 1985

• https://okmij.org/ftp/tagless-final/course/Boehm-
Berarducci.html

• https://homepages.inf.ed.ac.uk/wadler/papers/free-
rectypes/free-rectypes.txt

Encoding Data Types

try { throw =>

 p { (a, b) =>

 if (a == 0) throw(“error”)

 file.write(a);

 file.write(b)

}}

p { (a, b) =>

 file.write(a);

 file.write(b)

}

Implicit Capability-Polymorphic Elimination!

DATA TYPES

31

Revisiting the Counter Example

REACHABILITY TYPES

32

Part I: Foundations Part II: Applications

Core Reachability Types 
Type soundness, preservation of

separation

Th
ru

st
 0

Th
ru

st
 1

Th
ru

st
 2

Th
ru

st
 3

Th
ru

st
 4 Compiler optimizations & IR

 Correctness of optimizations

Real-world integrations 
Scala, OCaml, Swift

Programming patterns 
e.g. borrowing, capabilities, etc.

Education: 
curriculum development for PL and compiler courses, as well as lower-division programming

classesCompiler optimizations 
Integration with LMS compiler

Education 
PL and compiler courses

Performance case studies: 
e.g., tensor + SQL workloads in

a general purpose language

Th
ru

st
 5

Th
ru

st
 6

Th
ru

st
 7

Th
ru

st
 8

Th
ru

st
 9

F≤-style Type Polymorphism

Type soundness of extended

calculus

Log. rel. & equational theory
Logical relations and 
equational reasoning

Effects & flow-sensitivity 
Effects modulo reachability, 

typestate (gen/use/kill effects)

Research Roadmap, Artifacts @ https://github.com/TiarkRompf/reachability

● Aim: Provide end-to-end mechanized Coq
proofs for Thrusts 0-4!

● Core system (Thrust 0, 6): OOPSLA 2021

● Generics and data types (Thrust 1, 6):
Mechanization completed, Under submission.

● Compiler IR (Thrust 3, 4, 7, 8): Prototype in
progress. Under submission.

https://github.com/TiarkRompf/reachability

33

“We both know what memories can bring

They bring diamonds and rust”

— Joan Baez (1975)

34

REACHABILITY IMPLIES ALIASING
(But Not Vice Versa!)

35

val x = new Ref(42) : Ref[Int]{x}

val y = x : Ref[Int]{x,y}

val z = y : Ref[Int]{x,y,z}

val w = x : Ref[Int]{x,w}

• Reachability sets in context are immutable once
introduced!

• Cheaper to compute and maintain than full aliasing.

• Reachability is sufficient to check if two expressions
share aliasing, e.g.,

• Qualifiers of y and w overlap.

• Qualifiers of u and x are disjoint.

• Reachability + separation is sufficient to model
most uses of Rust-like systems!val v = (() => x)() : Ref[Int]{v,x}

val u = new Ref(42) : Ref[Int]{u}

